114.
If one root of the equation $$\left( {l - m} \right){x^2} + lx + 1 = 0$$ is double the other and $$l$$ is real, then what is the greatest value of $$m ?$$
115.
If the roots of $${a_1}{x^2} + {b_1}x + {c_1} = 0$$ are $${\alpha _1},{\beta _1},$$ and those of $${a_2}{x^2} + {b_2}x + {c_2} = 0$$ are $${\alpha _2},{\beta _2}$$ such that $${\alpha _1}{\alpha _2} = {\beta _1}{\beta _2} = 1$$ then
A
$$\frac{{{a_1}}}{{{a_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{c_2}}}$$
B
$$\frac{{{a_1}}}{{{c_2}}} = \frac{{{b_1}}}{{{b_2}}} = \frac{{{c_1}}}{{{a_2}}}$$
Roots of the second equation are reciprocal of those of the first.
$$\therefore \,\,{c_1}{x^2} + {b_1}x + {a_1} = 0\,\,{\text{and }}{a_2}{x^2} + {b_2}x + {c_2} = 0$$ have both roots common.
116.
The number of values of the pair $$(a, b)$$ for which $$a{\left( {x + 1} \right)^2} + b\left( {{x^2} - 3x - 2} \right) + x + 1 = 0$$ is an identity in $$x$$ is
$$\eqalign{
& {\text{We have,}} \cr
& f\left( x \right) = a{\left( {x + 1} \right)^2} + b\left( {{x^2} - 3x - 2} \right) + x + 1 \cr
& {\text{On expanding }}{\left( {x + 1} \right)^2}{\text{,}}\,{\text{we get}} \cr
& f\left( x \right) = a\left( {{x^2} + 2x + 1} \right) + b\left( {{x^2} - 3x - 2} \right) + x + 1 = 0 \cr
& f\left( x \right) = {x^2}\left( {a + b} \right) + x\left( {2a - 3b + 1} \right) + \left( {a - 2b + 1} \right) \cr
& {\text{If the above quadratic equation }}f\left( x \right) = 0\forall x = 0,{\text{ then}} \cr
& a + b = 0......\left( 1 \right) \cr
& 2a - 3b + 1 = 0......\left( 2 \right) \cr
& a - 2b + 1 = 0......\left( 3 \right) \cr
& {\text{From equation }}\left( 1 \right),\,a = - b \cr
& {\text{Put }}a = - b{\text{ in equation }}\left( 2 \right){\text{ and }}\left( 3 \right),{\text{ we get}} \cr
& b = \frac{1}{5}{\text{ from equation }}\left( 2 \right){\text{ and}} \cr
& b = \frac{1}{3}{\text{ from equation }}\left( 3 \right),{\text{ which is not possible}}{\text{.}} \cr
& \therefore \,\left( {a,\,b} \right) \in \phi {\text{ for which }}f\left( x \right) = 0\forall x \in R \cr} $$
117.
If both the roots of $$k\left( {6{x^2} + 3} \right) + rx + 2{x^2} - 1 = 0$$ and $$6k\left( {2{x^2} + 1} \right) + px + 4{x^2} - 2 = 0$$ are common, then $$2r - p$$ is equal to