131. If the sum of the roots of the quadratic equation $$a{x^2} + bx + c = 0$$     is equal to the sum of the squares of their reciprocals, then $$\frac{a}{c},\frac{b}{a}\,\,{\text{and}}\,\frac{c}{b}$$   are in

A Arithmetic - Geometric Progression
B Arithmetic Progression
C Geometric Progression
D Harmonic Progression.
Answer :   Harmonic Progression.
Discuss Question

132. If all real values of $$x$$ obtained from the equation $${4^x} - \left( {a - 3} \right){2^x} + a - 4 = 0$$      are non-positive then

A $$a \in \left( {4,5} \right]$$
B $$a \in \left( {0,4} \right)$$
C $$a \in \left( {4, + \infty } \right)$$
D None of these
Answer :   $$a \in \left( {4,5} \right]$$
Discuss Question

133. $${x^{{3^n}}} + {y^{{3^n}}}$$  is divisible by $$x + y$$  if

A $$n$$ is an integer $$ \geqslant 0$$
B $$n$$ is an odd positive integer
C $$n$$ is an even positive integer
D $$n$$ is a rational number
Answer :   $$n$$ is an integer $$ \geqslant 0$$
Discuss Question

134. If $$\left[ x \right]$$ = the greatest integer less than or equal to $$x,$$ and $$(x)$$ = the least integer greater than or equal to $$x,$$ and $${\left[ x \right]^2} + {\left( x \right)^2} > 25$$    then $$x$$ belongs to

A $$\left[ {3,4} \right]$$
B $$\left( { - \infty , - 4} \right]$$
C $$\left[ {4, + \infty } \right)$$
D $$\left( { - \infty , - 4} \right] \cup \left[ {4, + \infty } \right)$$
Answer :   $$\left( { - \infty , - 4} \right] \cup \left[ {4, + \infty } \right)$$
Discuss Question

135. If the roots of the quadratic equation $${x^2} + px + q = 0\,\,{\text{are }}\tan {30^ \circ }\,{\text{and tan1}}{{\text{5}}^ \circ },$$        respectively, then the value of $$2 + q - p$$   is

A 2
B 3
C 0
D 1
Answer :   3
Discuss Question

136. The solution set of $$\frac{{{x^2} - 3x + 4}}{{x + 1}} > 1,x \in R,$$     is

A $$\left( {3, + \infty } \right)$$
B $$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$
C $$\left[ { - 1,1} \right] \cup \left[ {3, + \infty } \right)$$
D None of these
Answer :   $$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$
Discuss Question

137. If $$a, b, c, d$$   are positive real numbers such that $$a + b + c + d = 2,\,{\text{then }}M = \left( {a + b} \right)\left( {c + d} \right)$$         satisfies the relation

A $$0 \leqslant M \leqslant 1$$
B $$1 \leqslant M \leqslant 2$$
C $$2 \leqslant M \leqslant 3$$
D $$3 \leqslant M \leqslant 4$$
Answer :   $$0 \leqslant M \leqslant 1$$
Discuss Question

138. If $${x^2} + {y^2} + {z^2} = 1$$    then the value of $$xy + yz + zx$$   lies in the interval

A $$\left[ {\frac{1}{2},2} \right]$$
B $$[ - 1, 2]$$
C $$\left[ - {\frac{1}{2},1} \right]$$
D $$\left[ { - 1,\frac{1}{2}} \right]$$
Answer :   $$\left[ - {\frac{1}{2},1} \right]$$
Discuss Question

139. For what value of $$\lambda $$ the sum of the squares of the roots of $${x^2} + \left( {2 + \lambda } \right)x - \frac{1}{2}\left( {1 + \lambda } \right) = 0$$       is minimum ?

A $$\frac{3}{2}$$
B $$1$$
C $$\frac{1}{2}$$
D $$\frac{11}{4}$$
Answer :   $$\frac{1}{2}$$
Discuss Question

140. The quadratic equations $${x^2} - 6x + a = 0\,\,{\text{and }}\,{x^2} - cx + 6 = 0$$        have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is

A 1
B 4
C 3
D 2
Answer :   2
Discuss Question


Practice More MCQ Question on Maths Section