131.
If the sum of the roots of the quadratic equation $$a{x^2} + bx + c = 0$$ is equal to the sum of the squares of their reciprocals, then $$\frac{a}{c},\frac{b}{a}\,\,{\text{and}}\,\frac{c}{b}$$ are in
A
Arithmetic - Geometric Progression
B
Arithmetic Progression
C
Geometric Progression
D
Harmonic Progression.
Answer :
Harmonic Progression.
View Solution
Discuss Question
$$a{x^2} + bx + c = 0,\,\,\alpha + \beta = \frac{{ - b}}{a},\alpha \beta = \frac{c}{a}$$
As for given condition, $$\alpha + \beta = \frac{1}{{{\alpha ^2}}} + \frac{1}{{{\beta ^2}}}$$
$$\eqalign{
& \alpha + \beta = \frac{{{\alpha ^2} + {\beta ^2}}}{{{\alpha ^2}{\beta ^2}}} - \frac{b}{a} = \frac{{\frac{{{b^2}}}{{{a^2}}} - \frac{{2c}}{a}}}{{\frac{{{c^2}}}{{{a^2}}}}} \cr
& {\text{On simplification }}2{a^2}c = a{b^2} + b{c^2} \cr
& \Rightarrow \,\,\frac{{2a}}{b} = \frac{c}{a} + \frac{b}{c} \cr
& \Rightarrow \,\,\frac{c}{a},\frac{a}{b},\frac{b}{c}\,\,{\text{are in A}}{\text{.P}}{\text{.}} \cr
& \therefore \,\,\frac{a}{c},\frac{b}{a}\& \frac{c}{b}\,\,{\text{are in H}}{\text{.P}}{\text{.}}\,\, \cr} $$
132.
If all real values of $$x$$ obtained from the equation $${4^x} - \left( {a - 3} \right){2^x} + a - 4 = 0$$ are non-positive then
A
$$a \in \left( {4,5} \right]$$
B
$$a \in \left( {0,4} \right)$$
C
$$a \in \left( {4, + \infty } \right)$$
D
None of these
Answer :
$$a \in \left( {4,5} \right]$$
View Solution
Discuss Question
$$\eqalign{
& {\left( {{2^x}} \right)^2} - \left( {a - 4} \right){2^x} - {2^x} + \left( {a - 4} \right) = 0 \cr
& \Rightarrow \,\,\left( {{2^x} - a + 4} \right)\left( {{2^x} - 1} \right) = 0 \cr
& \therefore \,\,{2^x} = 1,a - 4.\,\,{\text{As }}x \leqslant 0,0 < a - 4 \leqslant 1. \cr} $$
133.
$${x^{{3^n}}} + {y^{{3^n}}}$$ is divisible by $$x + y$$ if
A
$$n$$ is an integer $$ \geqslant 0$$
B
$$n$$ is an odd positive integer
C
$$n$$ is an even positive integer
D
$$n$$ is a rational number
Answer :
$$n$$ is an integer $$ \geqslant 0$$
View Solution
Discuss Question
$${x^{{3^n}}} + {\left( { - x} \right)^{{3^n}}} = 0\,\,{\text{if }}n \geqslant 0$$ and $$n$$ is an integer.
134.
If $$\left[ x \right]$$ = the greatest integer less than or equal to $$x,$$ and $$(x)$$ = the least integer greater than or equal to $$x,$$ and $${\left[ x \right]^2} + {\left( x \right)^2} > 25$$ then $$x$$ belongs to
A
$$\left[ {3,4} \right]$$
B
$$\left( { - \infty , - 4} \right]$$
C
$$\left[ {4, + \infty } \right)$$
D
$$\left( { - \infty , - 4} \right] \cup \left[ {4, + \infty } \right)$$
Answer :
$$\left( { - \infty , - 4} \right] \cup \left[ {4, + \infty } \right)$$
View Solution
Discuss Question
$$\eqalign{
& {\text{If }}x = n \in Z,{n^2} + {n^2} > 25.\,{\text{So, }}{n^2} > \frac{{25}}{2} \cr
& \therefore \,\,x = n = 4,5,6,.....\,\,{\text{or, }} - 4, - 5, - 6,..... \cr
& {\text{If }}x = n + k,n \in Z,0 < k < 1\,\,{\text{then }}{n^2} + {\left( {n + 1} \right)^2} > 25 \cr
& {\text{or, }}{n^2} + n - 12 > 0 \cr
& \therefore \,\,n < - 4\,\,{\text{or, }}n > 3 \cr
& \therefore \,\,x < - 4 + k\,\,{\text{or, }}x > 3 + k,\,{\text{where }}0 < k < 1 \cr
& \therefore \,\,x \leqslant - 4\,\,{\text{or, }}x \geqslant 4. \cr} $$
135.
If the roots of the quadratic equation $${x^2} + px + q = 0\,\,{\text{are }}\tan {30^ \circ }\,{\text{and tan1}}{{\text{5}}^ \circ },$$ respectively, then the value of $$2 + q - p$$ is
A
2
B
3
C
0
D
1
Answer :
3
View Solution
Discuss Question
$${x^2} + px + q = 0\,$$
Sum of roots $$ = \,\tan {30^ \circ } + \tan {15^ \circ } = - p$$
Product of roots $$ = \,\tan {30^ \circ }.\tan {15^ \circ } = q$$
$$\eqalign{
& \tan {45^ \circ } = \frac{{\tan {{30}^ \circ } + \tan {{15}^ \circ }}}{{1 - \tan {{30}^ \circ }.\tan {{15}^ \circ }}} = \frac{{ - p}}{{1 - q}} = 1 \cr
& \Rightarrow \,\, - p = 1 - q \cr
& \Rightarrow \,\,\,q - p = 1 \cr
& \therefore \,\,2 + q - p = 3 \cr} $$
136.
The solution set of $$\frac{{{x^2} - 3x + 4}}{{x + 1}} > 1,x \in R,$$ is
A
$$\left( {3, + \infty } \right)$$
B
$$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$
C
$$\left[ { - 1,1} \right] \cup \left[ {3, + \infty } \right)$$
D
None of these
Answer :
$$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{{x^2} - 3x + 4}}{{x + 1}} > 1 \cr
& \Rightarrow \,\,\frac{{{x^2} - 4x + 3}}{{x + 1}} > 0 \cr
& \Rightarrow \,\,\left( {x - 1} \right)\left( {x - 3} \right)\left( {x + 1} \right) > 0,x \ne - 1\left\{ {{\text{multiplying by }}{{\left( {x + 1} \right)}^2}} \right\} \cr} $$
∴ from general sign scheme:
$$\left\{ {\because \,\,{\text{for }}x = 0,\,{\text{expression}} > 0} \right\}.$$
137.
If $$a, b, c, d$$ are positive real numbers such that $$a + b + c + d = 2,\,{\text{then }}M = \left( {a + b} \right)\left( {c + d} \right)$$ satisfies the relation
A
$$0 \leqslant M \leqslant 1$$
B
$$1 \leqslant M \leqslant 2$$
C
$$2 \leqslant M \leqslant 3$$
D
$$3 \leqslant M \leqslant 4$$
Answer :
$$0 \leqslant M \leqslant 1$$
View Solution
Discuss Question
As A.M. $$ \geqslant $$ G,M, for positive real numbers, we get
$$\eqalign{
& \frac{{\left( {a + b} \right) + \left( {c + d} \right)}}{2} \geqslant \sqrt {\left( {a + b} \right)\left( {c + d} \right)} \cr
& \Rightarrow \,M \leqslant 1 \left( {{\text{Putting values}}} \right) \cr
& {\text{Also }}\left( {a + b} \right)\left( {c + d} \right) > 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\therefore \,\,a,b,c,d > 0} \right] \cr
& \therefore \,\,0 \leqslant M \leqslant 1 \cr} $$
138.
If $${x^2} + {y^2} + {z^2} = 1$$ then the value of $$xy + yz + zx$$ lies in the interval
A
$$\left[ {\frac{1}{2},2} \right]$$
B
$$[ - 1, 2]$$
C
$$\left[ - {\frac{1}{2},1} \right]$$
D
$$\left[ { - 1,\frac{1}{2}} \right]$$
Answer :
$$\left[ - {\frac{1}{2},1} \right]$$
View Solution
Discuss Question
Let $$xy + yz + zx = \lambda .$$ Then
$$\eqalign{
& {x^2} + {y^2} + {z^2} - \lambda = \frac{1}{2}\left[ {{{\left( {x - y} \right)}^2} + {{\left( {y - z} \right)}^2} + {{\left( {z - x} \right)}^2}} \right] \geqslant 0 \cr
& \Rightarrow \,\,1 - \lambda \geqslant 0. \cr
& {\text{Again, }}{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2} + 2\lambda = 1 + 2\lambda \cr
& \Rightarrow \,\,1 + 2\lambda \geqslant 0. \cr} $$
139.
For what value of $$\lambda $$ the sum of the squares of the roots of $${x^2} + \left( {2 + \lambda } \right)x - \frac{1}{2}\left( {1 + \lambda } \right) = 0$$ is minimum ?
A
$$\frac{3}{2}$$
B
$$1$$
C
$$\frac{1}{2}$$
D
$$\frac{11}{4}$$
Answer :
$$\frac{1}{2}$$
View Solution
Discuss Question
Given equation is
$$\eqalign{
& {x^2} + \left( {2 + \lambda } \right)x - \frac{1}{2}\left( {1 + \lambda } \right) = 0 \cr
& {\text{So, }}\alpha + \beta = - \left( {2 + \lambda } \right) = 0{\text{ and }}\alpha \beta = - \left( {\frac{{1 + \lambda }}{2}} \right) \cr
& {\text{Now, }}{\alpha ^2} + {\beta ^2} = {\left( {\alpha + \beta } \right)^2} - 2\alpha \beta \cr
& \Rightarrow {\alpha ^2} + {\beta ^2} = {\left[ { - \left( {2 + \lambda } \right)} \right]^2} + 2\frac{{\left( {1 + \lambda } \right)}}{2} \cr
& \Rightarrow {\alpha ^2} + {\beta ^2} = {\lambda ^2} + 4 + 4\lambda + 1 + \lambda \cr
& = {\lambda ^2} + 5\lambda + 5 \cr} $$
Which is minimum for $$\lambda = \frac{1}{2}.$$
140.
The quadratic equations $${x^2} - 6x + a = 0\,\,{\text{and }}\,{x^2} - cx + 6 = 0$$ have one root in common. The other roots of the first and second equations are integers in the ratio 4 : 3. Then the common root is
A
1
B
4
C
3
D
2
Answer :
2
View Solution
Discuss Question
Let the roots of equation $${x^2} - 6x + a = 0\,$$ be $$\alpha $$ and $$4\beta $$ and that of the equation
$${x^2} - cx + 6 = 0$$ be $$\alpha $$ and $$3\beta $$ . Then
$$\eqalign{
& \,\,\,\,\,\,\,\,\,\alpha + \,4\beta = 6;\,\,\,\,\,\,\,4\alpha \beta = a \cr
& {\text{and }}\alpha {\text{ + 3}}\beta = c;\,\,\,\,\,\,\,3\alpha \beta = 6 \cr
& \Rightarrow \,\,a = 8 \cr
& \therefore \,\,{\text{The equation becomes }}\,{x^2} - 6x + 8 = 0 \cr
& \Rightarrow \,\,\left( {x - 2} \right)\left( {x - 4} \right) = 0 \cr
& \Rightarrow \,\,{\text{roots are 2 and 4}} \cr
& \Rightarrow \,\,\alpha = 2,\beta = 1 \cr
& \therefore \,\,{\text{Common root is 2}}{\text{.}} \cr} $$