The given eq. is $$\sin {\left( e \right)^x} = {5^x} + {5^{ - x}}$$
We know $${5^x}$$ and $${5^{ - x}}$$ both are $$+ve$$ real numbers using
$$\eqalign{
& {\text{AM}} \geqslant {\text{GM}} \cr
& \therefore \,\,{{\text{5}}^x} + \frac{1}{{{5^x}}} \geqslant 2 \cr
& \Rightarrow \,\,{5^x} + {5^{ - x}} \geqslant 2 \cr
& \therefore \,\,{\text{R}}{\text{.H}}{\text{.S of given eq}}{\text{. }} \geqslant {\text{2}} \cr
& {\text{While }}\sin {e^x} \in \left[ { - 1,1} \right] \cr
& {\text{i}}{\text{.e}}{\text{. L}}{\text{.H}}{\text{.S }} \in \left[ { - 1,1} \right] \cr
& \therefore \,\,{\text{The equation is not possible for any real value of }}\,x. \cr
& {\text{Hence}}\,\,{\text{(A)}}\,\,{\text{is the correct answer}}{\text{.}} \cr} $$
102.
The set of possible values of $$x$$ such that $${5^x} + {\left( {2\sqrt 3 } \right)^{2x}} - 169$$ is always positive is
The equation is
$$ab{c^2}{x^2} + \left( {3{a^2}c + {b^2}c} \right)x - 6{a^2} - ab + 2{b^2} = 0$$
Discriminant
$$\eqalign{
& D = {\left( {3{a^2} + {b^2}} \right)^2}{c^2} - 4ab{c^2}\left( { - 6{a^2} - ab + 2{b^2}} \right) \cr
& = 9{a^4}{c^2} + {b^4}{c^2} + 6{a^2}{b^2}{c^2} + 24{a^3}b{c^2} + 4{a^2}{b^2}{c^2} - 8a{b^3}{c^2} \cr
& = 9{a^4}{c^2} + 16{a^2}{b^2}{c^2} + {b^4}{c^2} + 24{a^3}b{c^2} - 8a{b^3}{c^2} - 6{a^2}{b^2}{c^2} \cr
& = {\left( {3{a^2}c + 4abc - {b^2}c} \right)^2} \cr} $$
Since, the discriminant is a prefect square, therefore the roots are rational provided $$a, b, c$$ are rational.
104.
If one root of the equation $${x^2} + px + 12 = 0$$ is 4, while the equation $${x^2} + px + q = 0$$ has equal roots , then the value of $$‘q’$$ is
105.
If $$a, b, c, d$$ are four consecutive terms of an increasing A.P. then the roots of the equation $$\left( {x - a} \right)\left( {x - c} \right) + 2\left( {x - b} \right)\left( {x - d} \right) = 0$$ are
Solve the inequations $${x^2} - 3x + 2 \leqslant 0$$ and $$2{x^2} - 3x - 5 \geqslant 0.$$ If $${S_1},{S_2}$$ are the respective solution sets then $${S_1} \cap {S_2}$$ is the required solution set.
107.
The number of real solutions of the equation $${e^x} = x$$ is
109.
The number of values of $$k,$$ for which the system of equations:
$$\eqalign{
& \left( {k + 1} \right)x + 8y = 4k \cr
& kx + \left( {k + 3} \right)y = 3k - 1 \cr} $$
has no solution, is
From the given system, we have
$$\eqalign{
& \frac{{k + 1}}{k} = \frac{8}{{k + 3}} \ne \frac{{4k}}{{3k - 1}}\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because \,\,{\text{System has no solution}}} \right) \cr
& \Rightarrow \,\,{k^2} + 4k + 3 = 8k \cr
& \Rightarrow \,\,k = 1,3 \cr
& {\text{If }}k = 1\,\,\,\,{\text{then }}\frac{8}{{1 + 3}} \ne \frac{{4.1}}{2}\,\,{\text{which is false}} \cr
& {\text{And if }}k = 3 \cr} $$
$${\text{then }}\frac{8}{6} \ne \frac{{4.3}}{{9 - 1}}$$ which is true, therefore $$k = 3$$
Hence for only one value of $$k$$ System has no solution.
110.
If the roots of $$ax^2 + bx + c = 0$$ are $$\sin \alpha $$ and $$\cos \alpha $$ for some $$\alpha ,$$ then which one of the following is correct ?