31. If $$\alpha \,\,{\text{and}}\,\,\beta \left( {\alpha < \beta } \right)$$    are the roots of the equation $${x^2} + bx + c = 0,$$    where $$c < 0 < b$$  , then

A $$0 < \alpha < \beta $$
B $$\alpha < 0 < \beta < \left| \alpha \right|$$
C $$\alpha < \beta < 0$$
D $$\alpha < 0 < \left| \alpha \right| < \beta $$
Answer :   $$\alpha < 0 < \beta < \left| \alpha \right|$$
Discuss Question

32. Let $$\alpha ,\beta $$  be the roots of the equation $$\left( {x - a} \right)\left( {x - b} \right) = c,c \ne 0.$$     Then the roots of the equation $$\left( {x - \alpha } \right)\left( {x - \beta } \right) + c = 0\,\,{\text{are}}$$

A $$a, c$$
B $$b, c$$
C $$a, b$$
D $$a + c, b + c$$
Answer :   $$a, b$$
Discuss Question

33. If $$\alpha ,\beta $$  be the roots of the equation $$x^2 - px + q = 0$$    and $${\alpha_1} , {\beta_1} $$  the roots of the equation $$x^ 2 - qx + p = 0 ,$$    then the equation whose roots are $$\frac{1}{{{\alpha _1}\beta }} + \frac{1}{{\alpha {\beta _1}}}\,{\text{and}}\frac{1}{{\alpha {\alpha _1}}} + \frac{1}{{\beta {\beta _1}}}{\text{is}}$$

A $$pq{x^2} - pqx + {p^2} + {q^2} + 4pq = 0$$
B $${p^2}{q^2}{x^2} - {p^2}{q^2}x + {p^3} + {q^3} - 4pq = 0$$
C $${p^3}{q^3}{x^3} - {p^3}{q^3}x + {p^4} + {q^4} - 4{p^2}{q^2} = 0$$
D $$\left( {p + q} \right){x^2} - \left( {p + q} \right)x + {p^2} + {q^2} + pq = 0$$
Answer :   $${p^2}{q^2}{x^2} - {p^2}{q^2}x + {p^3} + {q^3} - 4pq = 0$$
Discuss Question

34. Let $$a > 0, b > 0$$   and $$c > 0.$$  Then both the roots of the equation $$ax^2 + bx + c = 0$$

A are real and negative
B have negative real parts
C are rational numbers
D None of these
Answer :   have negative real parts
Discuss Question

35. In a triangle $$PQR,$$   $$\angle \,R = \frac{\pi }{2}.\,{\text{If tan}}\left( {\frac{P}{2}} \right){\text{and }} - \tan \left( {\frac{Q}{2}} \right)$$        are the roots of $$a{x^2} + bx + c = 0,\,a \ne 0\,\,{\text{then}}$$

A $$a = b + c$$
B $$c = a + b$$
C $$b = c$$
D $$b = a + c$$
Answer :   $$c = a + b$$
Discuss Question

36. The number of integral solutions of $$\frac{{x + 2}}{{{x^2} + 1}} > \frac{1}{2}$$   is

A 4
B 5
C 3
D None of these
Answer :   3
Discuss Question

37. For all $$'x'\,,{x^2} + 2ax + 10 - 3a > 0,$$      then the interval in which $$'a'$$ lies is

A $$a < - 5$$
B $$- 5 < a < 2$$
C $$a > 5$$
D $$2 < a < 5$$
Answer :   $$- 5 < a < 2$$
Discuss Question

38. If the product of the roots of the equation $${x^2} - 5x + {4^{{{\log }_2}\lambda }} = 0$$     is 8 then $$\lambda $$ is

A $$ \pm 2\sqrt 2 $$
B $$ 2\sqrt 2 $$
C $$3$$
D None of these
Answer :   $$ 2\sqrt 2 $$
Discuss Question

39. If $${\cos ^4}x + {\sin ^2}x - p = 0,p \in R$$      has real solutions then

A $$p \leqslant 1$$
B $$\frac{3}{4} \leqslant p \leqslant 1$$
C $$p \geqslant \frac{3}{4}$$
D None of these
Answer :   $$\frac{3}{4} \leqslant p \leqslant 1$$
Discuss Question

40. If $${5^x} + {\left( {2\sqrt 3 } \right)^{2x}} \geqslant {13^x}$$    then the solution set for $$x$$ is

A $$\left[ {2, + \infty } \right)$$
B $$\left\{ 2 \right\}$$
C $$\left( { - \infty ,2} \right]$$
D $$\left[ {0,2} \right]$$
Answer :   $$\left( { - \infty ,2} \right]$$
Discuss Question


Practice More MCQ Question on Maths Section