Let $$A\left( {1,\, - 2,\,3} \right)$$ and $$B\left( {4,\,2,\, - 1} \right)$$
Let the plane $$XOY$$ meet the line $$AB$$ in the point $$C$$ such that $$C$$ divides $$AB$$ in the ratio $$k : 1,$$ then
$$C \equiv \left( {\frac{{4k + 1}}{{k + 1}},\,\frac{{2k - 2}}{{k + 1}},\,\frac{{ - k + 3}}{{k + 1}}} \right)$$
Since $$C$$ lies on the plane $$XOY$$ i.e., the plane $$z = 0,$$ therefore
$$\frac{{ - k + 3}}{{k + 1}} = 0 \Rightarrow k = 3$$
62.
The angle between the line $$\frac{{x - 2}}{a} = \frac{{y - 2}}{b} = \frac{{z - 2}}{c}$$ and the plane $$ax + by + cz + 6 = 0$$ is :
65.
If a line in the space makes angle $$\alpha ,\,\beta $$ and $$\gamma $$ with the coordinate axes, then $$\cos \,2\alpha + \cos \,2\beta + \cos \,2\gamma + {\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $$ equals :
67.
The length of the projection of the line segment joining the points $$\left( {5,\, - 1,\,4} \right)$$ and $$\left( {4,\, - 1,\,3} \right)$$ on the plane, $$x+y+z=7$$ is :
68.
The equation of a sphere is $${x^2} + {y^2} + {z^2} - 10z = 0.$$ If one end point of a diameter of the sphere is $$\left( { - 3,\, - 4,\,5} \right),$$ what is the other end point ?
The equation of the given sphere is
$${x^2} + {y^2} + {z^2} - 10z = 0.$$
$$\therefore $$ Its centre is $$\left( {0,\,0,\,5} \right).$$
Coordinates of one end point of a diameter of the sphere is given as $$\left( { - 3,\, - 4,\,5} \right).$$
Let Coordinates of another end point of this diameter $$\left( {{x_1},\,{y_1},\,{z_1}} \right).$$
$$\eqalign{
& \therefore \,\frac{{ - 3 + {x_1}}}{2} = 0 \Rightarrow {x_1} = 3, \cr
& \frac{{ - 4 + {y_1}}}{2} = 0 \Rightarrow {y_1} = 4 \cr
& {\text{and }}\frac{{5 + {z_1}}}{2} = 5 \Rightarrow {z_1} = 5 \cr} $$
$$\therefore $$ Required coordinates are $$\left( {3,\,4,\,5} \right).$$
69.
The direction cosines $$l,\,m,\,n$$ of two lines are connected by the relations $$l + m + n = 0,\,lm = 0,$$ then the angle between them is :
Given d’c’s of two lines are $$l,\,m,\,n$$ connected by the relations $$l + m + n = 0$$ and $$lm = 0$$
$$\eqalign{
& {\text{Now, }}l + m + n = 0 \cr
& \Rightarrow l = - m - n \cr
& \Rightarrow l = - \left( {m + n} \right) \cr
& {\text{and }}lm = 0 \cr
& \Rightarrow - \left( {m + n} \right)m = 0 \cr
& \Rightarrow - mm - mn = 0 \cr
& \Rightarrow mm = - mn\,; \cr
& {\text{Therefore }}m{\text{ and }}m + n = 0 \cr
& {\text{Then }}\frac{{{l_1}}}{{ - 1}} = \frac{{{m_1}}}{0} = \frac{{{n_1}}}{1}\,{\text{and if }}l + m + n = 0 \cr
& {\text{then }}\frac{{{l_2}}}{0} = \frac{{{m_2}}}{{ - 1}} = \frac{{{n_2}}}{1}\, \cr
& \left( {{l_1},\,{m_1},\,{n_1}} \right) = \left( { - 1,\,0,\,1} \right)\,{\text{and }}\left( {{l_2},\,{m_2},\,{n_2}} \right) = \left( {0,\, - 1,\,1} \right) \cr} $$
We know that angle between them
$$\eqalign{
& \cos \,\theta = \frac{{0 + 0 + 1}}{{\sqrt {1 + 0 + 1} \sqrt {0 + 1 + 1} }} \cr
& \Rightarrow \cos \,\theta = \frac{1}{{\sqrt 2 \sqrt 2 }} \cr
& \Rightarrow \cos \,\theta = \frac{1}{2} \cr
& \Rightarrow \cos \,\theta = \cos \,{60^ \circ } \cr
& \Rightarrow \theta = {60^ \circ } \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr} $$
70.
If the distance of the point $$P\left( {1,\, - 2,\,1} \right)$$ from the plane $$x + 2y - 2z = \alpha ,$$ where $$\alpha > 0,$$ is 5, then the foot of the perpendicular from $$P$$ to the plane is :
A
$$\left( {\frac{8}{3},\,\frac{4}{3},\, - \frac{7}{3}} \right)$$
B
$$\left( {\frac{4}{3},\, - \frac{4}{3},\,\frac{1}{3}} \right)$$
C
$$\left( {\frac{1}{3},\,\frac{2}{3},\,\frac{{10}}{3}} \right)$$
D
$$\left( {\frac{2}{3},\, - \frac{1}{3},\,\frac{5}{2}} \right)$$