61. The ratio in which the join of points $$\left( {1,\, - 2,\,3} \right)$$   and $$\left( {4,\,2,\, - 1} \right)$$   is divided by $$XOY$$  plane is :

A $$1:3$$
B $$3:1$$
C $$ - 1:3$$
D None of these
Answer :   $$3:1$$
Discuss Question

62. The angle between the line $$\frac{{x - 2}}{a} = \frac{{y - 2}}{b} = \frac{{z - 2}}{c}$$     and the plane $$ax + by + cz + 6 = 0$$     is :

A $${\sin ^{ - 1}}\left( {\frac{1}{{\sqrt {{a^2} + {b^2} + {c^2}} }}} \right)$$
B $${45^ \circ }$$
C $${60^ \circ }$$
D $${90^ \circ }$$
Answer :   $${90^ \circ }$$
Discuss Question

63. The radius of the circle in which the sphere $${x^2} + {y^2} + {z^2} + 2x - 2y - 4z - 19 = 0$$        is cut by the plane $$x + 2y + 2z + 7 = 0$$     is :

A $$4$$
B $$1$$
C $$2$$
D $$3$$
Answer :   $$3$$
Discuss Question

64. The equation of the plane containing the line $$2x - 5y + z = 3;\,x + y + 4y = 5,$$       and parallel to the plane, $$x + 3y + 6z = 1,$$    is :

A $$x + 3y + 6z = 7$$
B $$2x + 6y + 12z = - 13$$
C $$2x + 6y + 12z = 13$$
D $$x + 3y + 6z = - 7$$
Answer :   $$x + 3y + 6z = 7$$
Discuss Question

65. If a line in the space makes angle $$\alpha ,\,\beta $$  and $$\gamma $$ with the coordinate axes, then $$\cos \,2\alpha + \cos \,2\beta + \cos \,2\gamma + {\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $$           equals :

A $$ - 1$$
B $$0$$
C $$1$$
D $$2$$
Answer :   $$1$$
Discuss Question

66. What is the angle between the lines $$\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z + 2}}{1}$$     and $$\frac{{x - 1}}{1} = \frac{{2y + 3}}{3} = \frac{{z + 5}}{2}\,?$$

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{6}$$
D None of the above
Answer :   $$\frac{\pi }{2}$$
Discuss Question

67. The length of the projection of the line segment joining the points $$\left( {5,\, - 1,\,4} \right)$$   and $$\left( {4,\, - 1,\,3} \right)$$   on the plane, $$x+y+z=7$$   is :

A $$\frac{2}{3}$$
B $$\frac{1}{3}$$
C $$\sqrt {\frac{2}{3}} $$
D $$\frac{2}{{\sqrt 3 }}$$
Answer :   $$\sqrt {\frac{2}{3}} $$
Discuss Question

68. The equation of a sphere is $${x^2} + {y^2} + {z^2} - 10z = 0.$$     If one end point of a diameter of the sphere is $$\left( { - 3,\, - 4,\,5} \right),$$   what is the other end point ?

A $$\left( { - 3,\, - 4,\, - 5} \right)$$
B $$\left( {3,\,4,\,5} \right)$$
C $$\left( {3,\,4,\, - 5} \right)$$
D $$\left( { - 3,\,4,\, - 5} \right)$$
Answer :   $$\left( {3,\,4,\,5} \right)$$
Discuss Question

69. The direction cosines $$l,\,m,\,n$$  of two lines are connected by the relations $$l + m + n = 0,\,lm = 0,$$     then the angle between them is :

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{2}$$
D $$0$$
Answer :   $$\frac{\pi }{3}$$
Discuss Question

70. If the distance of the point $$P\left( {1,\, - 2,\,1} \right)$$   from the plane $$x + 2y - 2z = \alpha ,$$    where $$\alpha > 0,$$  is 5, then the foot of the perpendicular from $$P$$ to the plane is :

A $$\left( {\frac{8}{3},\,\frac{4}{3},\, - \frac{7}{3}} \right)$$
B $$\left( {\frac{4}{3},\, - \frac{4}{3},\,\frac{1}{3}} \right)$$
C $$\left( {\frac{1}{3},\,\frac{2}{3},\,\frac{{10}}{3}} \right)$$
D $$\left( {\frac{2}{3},\, - \frac{1}{3},\,\frac{5}{2}} \right)$$
Answer :   $$\left( {\frac{8}{3},\,\frac{4}{3},\, - \frac{7}{3}} \right)$$
Discuss Question


Practice More MCQ Question on Maths Section