$$\because $$ The line $$\frac{{x - 2}}{3} = \frac{{y - 1}}{{ - 5}} = \frac{{z + 2}}{2}$$ lies in the plane $$x + 3y - \alpha z + \beta = 0$$
$$\therefore Pt\left( {2,\,1,\, - 2} \right)$$ lies on the plane
i.e., $$2 + 3 + 2\alpha + \beta = 0$$
or $$2\alpha + \beta + 5 = 0.....({\text{i}})$$
Also normal to plane will be perpendicular to line,
$$\eqalign{
& \therefore 3 \times 1 - 5 \times 3 + 2 \times \left( { - \alpha } \right) = 0 \cr
& \Rightarrow \alpha = - 6 \cr} $$
From equation (i) then, $$\beta = 7$$
$$\therefore \,\,\left( {\alpha ,\,\beta } \right) = \left( { - 6,\,7} \right)$$
123.
If the plane $$2ax-3ay+4az+6=0$$ passes through the midpoint of the line joining the centres of the spheres $${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$ and $${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$ then $$a$$ equals :
Centers of given spheres are $$\left( { - 3,\,4,\,1} \right)$$ and $$\left( {5,\, - 2,\,1} \right).$$
Mid point of centres is (1, 1, 1).
Satisfying this in the equation of plane, we get
$$\eqalign{
& 2a - 3a + 4a + 6 = 0 \cr
& \Rightarrow a = - 2 \cr} $$
124.
If the direction cosines of a line are $$\left( {\frac{1}{c},\,\frac{1}{c},\,\frac{1}{c}} \right)$$ then :
Given equations of two planes are $$2x - y + z = 4$$ and $$x + y + 2z = 6$$
So, angle between them is
$$\eqalign{
& \cos \,\theta = \frac{{2\left( 1 \right) + \left( { - 1} \right)\left( 1 \right) + \left( 1 \right)\left( 2 \right)}}{{\sqrt {4 + 1 + 1} \,\sqrt {4 + 1 + 1} }} \cr
& \Rightarrow \cos \,\theta = \frac{{2 - 1 + 2}}{{\sqrt 6 \,\sqrt 6 }} \cr
& \Rightarrow \cos \,\theta = \frac{3}{6} \cr
& \Rightarrow \cos \,\theta = \frac{1}{2} \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr} $$
128.
What are coordinates of the point equidistant from the points $$\left( {a,\,0,\,0} \right),\,\left( {0,\,a,\,0} \right),\,\left( {0,\,0,\,a} \right)$$ and $$\left( {0,\,0,\,0} \right)\,?$$
A
$$\left( {\frac{a}{3},\,\frac{a}{3},\,\frac{a}{3}} \right)$$
B
$$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$
Suppose $$xy$$ -plane divides the line joining the given points in the ratio $$\lambda :1.$$
The coordinate of the point of division are
$$\left( {\frac{{2\lambda - 1}}{{\lambda + 1}},\,\frac{{ - 5\lambda + 3}}{{\lambda + 1}},\,\frac{{6\lambda + 4}}{{\lambda + 1}}} \right)$$
This point lies on $$xy$$ -plane
$$\frac{{6\lambda + 4}}{{\lambda + 1}} = 0 \Rightarrow \lambda = - \frac{3}{2}$$
Hence, $$xy$$ -plane divides externally in the ratio $$3 : 2.$$
130.
If the sum of the squares of the distance of the point $$\left( {x,\,y,\,z} \right)$$ from the points $$\left( {a,\,0,\,0} \right)$$ and $$\left( { - a,\,0,\,0} \right)$$ is $$2{c^2},$$ then which one of the following is correct ?