41. The two lines $$x=ay+b,\,z=cy+d$$     and $$x=a'y+b',\,z=c'y+d'$$      will be perpendicular, if and only if :

A $$aa'+cc'+1=0$$
B $$aa' +bb'+cc'+1=0$$
C $$aa'+bb' +cc'=0$$
D $$\left( {a + a'} \right)\left( {b + b'} \right) + \left( {c + c'} \right) = 0$$
Answer :   $$aa'+cc'+1=0$$
Discuss Question

42. Under what condition are the two lines $$y = \frac{m}{\ell }x + \alpha ,\,z = \frac{n}{\ell }x + \beta \,;$$       and $$y = \frac{{m'}}{{\ell '}}x + \alpha ',\,z = \frac{{n'}}{{\ell '}}x + \beta '$$      orthogonal ?

A $$\alpha \alpha ' + \beta \beta ' + 1 = 0$$
B $$\left( {\alpha + \alpha '} \right) + \left( {\beta + \beta '} \right) = 0$$
C $$\ell \ell ' + mm' + nn' = 1$$
D $$\ell \ell ' + mm' + nn' = 0$$
Answer :   $$\ell \ell ' + mm' + nn' = 0$$
Discuss Question

43. The plane $$x+2y-z=4$$    cuts the sphere $${x^2} + {y^2} + {z^2} - x + z - 2 = 0$$       in a circle of radius :

A $$3$$
B $$1$$
C $$2$$
D $$\sqrt 2 $$
Answer :   $$1$$
Discuss Question

44. If the angle between the line $$x = \frac{{y - 1}}{2} = \frac{{z - 3}}{\lambda }$$    and the plane $$x+2y+3z=4$$    is $${\cos ^{ - 1}}\left( {\sqrt {\frac{5}{{14}}} } \right),$$    then $$\lambda $$ equals :

A $$\frac{3}{2}$$
B $$\frac{2}{5}$$
C $$\frac{5}{3}$$
D $$\frac{2}{3}$$
Answer :   $$\frac{2}{3}$$
Discuss Question

45. The points $$\left( {4,\,7,\,8} \right),\,\left( {2,\,3,\,4} \right),\,\left( { - 1,\, - 2,\,1} \right)$$       and $$\left( {1,\,2,\,5} \right)$$   are the vertices of a :

A parallelogram
B rhombus
C rectangle
D square
Answer :   parallelogram
Discuss Question

46. The distance of the point $$\left( {1,\,3,\, - 7} \right)$$   from the plane passing through the point $$\left( {1,\, - 1,\, - 1} \right),$$   having normal perpendicular to both the lines $$\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 4}}{3}$$     and $$\frac{{x - 2}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 7}}{{ - 1}},$$      is :

A $$\frac{{10}}{{\sqrt {74} }}$$
B $$\frac{{20}}{{\sqrt {74} }}$$
C $$\frac{{10}}{{\sqrt {83} }}$$
D $$\frac{5}{{\sqrt {83} }}$$
Answer :   $$\frac{{10}}{{\sqrt {83} }}$$
Discuss Question

47. Which one of the following is the plane containing the line $$\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z - 4}}{5}$$     and parallel to $$z$$-axis ?

A $$2x - 3y = 0$$
B $$5x - 2z = 0$$
C $$5y - 3z = 0$$
D $$3x - 2y = 0$$
Answer :   $$3x - 2y = 0$$
Discuss Question

48. A plane passing through $$\left( {1,\,1,\,1} \right)$$   cuts positive direction of coordinate axes at $$A,\,B$$  and $$C$$, then the volume of tetrahedron $$OABC$$   satisfies :

A $$V \leqslant \frac{9}{2}$$
B $$V \geqslant \frac{9}{2}$$
C $$V = \frac{9}{2}$$
D None of these
Answer :   $$V \geqslant \frac{9}{2}$$
Discuss Question

49. The vector $$\overrightarrow a = \alpha \hat i + 2\hat j + \beta \hat k$$     lies in the plane of the vectors $$\overrightarrow b = \hat i + \hat j$$   and $$\overrightarrow c = \hat j + \hat k$$   and bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$. Then which one of the following gives possible values of $$a$$ and $$b\,?$$

A $$\alpha = 2,\,\beta = 2$$
B $$\alpha = 1,\,\beta = 2$$
C $$\alpha = 2,\,\beta = 1$$
D $$\alpha = 1,\,\beta = 1$$
Answer :   $$\alpha = 1,\,\beta = 1$$
Discuss Question

50. The distance of point $$A\left( { - 2,\,3,\,1} \right)$$    from the line $$PQ$$  through $$P\left( { - 3,\,5,\,2} \right)$$    which makes equal angles with the axes is :

A $$\frac{2}{{\sqrt 3 }}$$
B $$\sqrt {\frac{{14}}{3}} $$
C $$\frac{{16}}{{\sqrt 3 }}$$
D $$\frac{5}{{\sqrt 3 }}$$
Answer :   $$\sqrt {\frac{{14}}{3}} $$
Discuss Question


Practice More MCQ Question on Maths Section