Perpendicular distance of centre $$\left( {\frac{1}{2},\,0,\, - \frac{1}{2}} \right)$$ from $$x+2y-2=4$$ is given by $$\frac{{\left| {\frac{1}{2} + \frac{1}{2} - 4} \right|}}{{\sqrt 6 }} = \sqrt {\frac{3}{2}} $$
Radius of sphere $$ = \sqrt {\frac{1}{4} + \frac{1}{4} + 2} = \sqrt {\frac{5}{2}} $$
$$\therefore $$ Radius of circle $$ = \sqrt {\frac{5}{2} - \frac{3}{2}} = 1$$
44.
If the angle between the line $$x = \frac{{y - 1}}{2} = \frac{{z - 3}}{\lambda }$$ and the plane $$x+2y+3z=4$$ is $${\cos ^{ - 1}}\left( {\sqrt {\frac{5}{{14}}} } \right),$$ then $$\lambda $$ equals :
If $$\theta $$ be the angle between the given line and plane, then
$$\sin \,\theta = \frac{{1 \times 1 + 2 \times 2 + \lambda \times 3}}{{\sqrt {{1^2} + {2^2} + {\lambda ^2}} .\sqrt {{1^2} + {2^2} + {3^2}} }} = \frac{{5 + 3\lambda }}{{\sqrt {14} .\sqrt {5 + {\lambda ^2}} }}$$
But it is given that $$\theta = {\cos ^{ - 1}}\sqrt {\frac{5}{{14}}} = \sin \,\theta = \frac{3}{{\sqrt {14} }}$$
$$\therefore \frac{{5 + 3\lambda }}{{\sqrt {14} .\sqrt {5 + {\lambda ^2}} }} = \frac{3}{{\sqrt {14} }}\,\,\,\,\,\,\,\,\,\, \Rightarrow \lambda = \frac{2}{3}$$
45.
The points $$\left( {4,\,7,\,8} \right),\,\left( {2,\,3,\,4} \right),\,\left( { - 1,\, - 2,\,1} \right)$$ and $$\left( {1,\,2,\,5} \right)$$ are the vertices of a :
Let the points are $$A,\,B,\,C$$ and $$D$$ respectively.
Mid point of $$AC$$ is
$$\left( {\frac{{4 - 1}}{2},\,\frac{{7 - 2}}{2},\,\frac{{8 + 1}}{2}} \right){\text{ or }}\left( {\frac{3}{2},\,\frac{5}{2},\,\frac{9}{2}} \right)$$
Mid point of $$BD$$ is
$$\left( {\frac{{2 + 1}}{2},\,\frac{{3 + 2}}{2},\,\frac{{4 + 5}}{2}} \right){\text{ or }}\left( {\frac{3}{2},\,\frac{5}{2},\,\frac{9}{2}} \right)$$
Thus $$AC$$ and $$BD$$ bisect each other. Further,
$$\eqalign{
& AC = \sqrt {{{\left( {4 + 1} \right)}^2} + {{\left( {7 + 2} \right)}^2} + {{\left( {8 - 1} \right)}^2}} \cr
& AC = \sqrt {25 + 81 + 49} \cr
& AC = \sqrt {155} \cr
& BD = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {3 - 2} \right)}^2} + {{\left( {4 - 5} \right)}^2}} \cr
& BD = \sqrt {1 + 1 + 1} \cr
& BD = \sqrt 3 \cr
& \therefore \,AC \ne BD \cr} $$
Hence, $$ABCD$$ represents a parallelogram.
46.
The distance of the point $$\left( {1,\,3,\, - 7} \right)$$ from the plane passing through the point $$\left( {1,\, - 1,\, - 1} \right),$$ having normal perpendicular to both the lines $$\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 2}} = \frac{{z - 4}}{3}$$ and $$\frac{{x - 2}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 7}}{{ - 1}},$$ is :
Let the plane be $$a\left( {x - 1} \right) + b\left( {y + 1} \right) + c\left( {z + 1} \right) = 0$$
Normal vector
\[\left| \begin{array}{l}
\hat i\,\,\,\,\,\,\,\,\,\,\,\hat j\,\,\,\,\,\,\,\,\,\,\,\,\hat k\\
1\,\,\, - 2\,\,\,\,\,\,\,\,\,\,3\\
2\,\,\, - 1\,\, - 1
\end{array} \right| = 5\hat i + 7\hat j + 3\hat k\]
So plane is $$\eqalign{
& 5\left( {x - 1} \right) + 7\left( {y + 1} \right) + 3\left( {z + 1} \right) = 0 \cr
& \Rightarrow 5x + 7y + 3z + 5 = 0 \cr} $$
Distance of point $$\left( {1,\,3,\, - 7} \right)$$ from the plane is
$$\frac{{5 + 21 - 21 + 5}}{{\sqrt {25 + 49 + 9} }} = \frac{{10}}{{\sqrt {83} }}$$
47.
Which one of the following is the plane containing the line $$\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z - 4}}{5}$$ and parallel to $$z$$-axis ?
The equation of the line is $$\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z - 4}}{5} = r$$
Where $$r$$ is a constant. Any point on this line, is given by $$x = 2r + 2,\,y = 3r + 2$$ and $$z = 5r + 4$$
Since, a plane that is parallel to $$z$$-axis will have no $$z$$-co-ordinate, $$z = 0$$
$$z = 0 \Rightarrow 5r + 4 = 0{\text{ or, }}r = \frac{{ - 4}}{5}$$
Putting this value of r for $$x$$ and $$y$$ co-ordinates.
$$\eqalign{
& x = 2r + 2 = 2 \times \left( { - \frac{4}{5}} \right) + 2 \cr
& {\text{or, }}5x = - 8 + 10 \cr
& {\text{or, }}5x = 2 \cr
& x = \frac{2}{5},\,{\text{or }}\,\frac{2}{x} = 5......\left( 1 \right) \cr
& {\text{Similarly, }}y = 3r + 3 = 3 \times \left( { - \frac{4}{5}} \right) + 3 \cr
& {\text{or, }}5y = - 12 + 15 \cr
& {\text{or, }}5y = 3 \cr
& y = \frac{3}{5},\,{\text{or }}\frac{3}{y} = 5......\left( 2 \right) \cr
& {\text{From equation}}\,\left( 1 \right){\text{ and }}\left( 2 \right) \cr
& \frac{2}{x} = \frac{3}{y} \Rightarrow 3x - 2y = 0 \cr} $$
48.
A plane passing through $$\left( {1,\,1,\,1} \right)$$ cuts positive direction of coordinate axes at $$A,\,B$$ and $$C$$, then the volume of tetrahedron $$OABC$$ satisfies :
49.
The vector $$\overrightarrow a = \alpha \hat i + 2\hat j + \beta \hat k$$ lies in the plane of the vectors $$\overrightarrow b = \hat i + \hat j$$ and $$\overrightarrow c = \hat j + \hat k$$ and bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$. Then which one of the following gives possible values of $$a$$ and $$b\,?$$
$$\eqalign{
& \because \,\overrightarrow a {\text{ lies in the plane of }}\overrightarrow b {\text{ and }}\overrightarrow c \cr
& \therefore \,\overrightarrow a = \overrightarrow b + \lambda \overrightarrow c \cr
& \Rightarrow \alpha \hat i + 2\hat j + \beta \hat k = \hat i + \hat j + \lambda \left( {\hat j + \hat k} \right) \cr
& \Rightarrow \alpha = 1,\,2 = 1 + \lambda ,\,\beta = \lambda \cr
& \Rightarrow \alpha = 1,\,\,\beta = 1 \cr} $$
50.
The distance of point $$A\left( { - 2,\,3,\,1} \right)$$ from the line $$PQ$$ through $$P\left( { - 3,\,5,\,2} \right)$$ which makes equal angles with the axes is :