For the orthogonal section $${C_1}P$$ and $${C_2}P$$ are pendicular where $${C_1}$$ and $${C_2}$$ are centres of sphere of radii $$4$$ and $$3$$ respectively.
Now $${C_1}P = 4$$ and $${C_2}P = 3,$$ so $$\tan \,\theta = \frac{3}{4}$$
$$\therefore $$ Radius of circle of intersection
$$OP = {C_1}P\,\sin \,\theta = 4 \times \frac{3}{5} = \frac{{12}}{5}$$
112.
The image of the point $$\left( { - 1,\,3,\,4} \right)$$ in the plane $$x-2y=0$$ is :
A
$$\left( { - \frac{{17}}{3},\, - \frac{{19}}{3},\,4} \right)$$
B
$$\left( {15,\,11,\,4} \right)$$
C
$$\left( { - \frac{{17}}{3},\, - \frac{{19}}{3},\,1} \right)$$
Direction cosines of the normal to the plane $$3x + y + z = 5$$ are $$3,\,1,\,1$$
Direction cosines of the normal to the plane $$x - 2y - z = 6$$ are $$1,\,- 2,\, - 1$$
Sum of the product of direction cosines $$ = 3 \times 1 + 1 \times \left( { - 2} \right) + 1 \times \left( { - 1} \right) = 0$$
Hence, normls to the two planes are perpendicular to each other. Therefore two planes are also perpendicular.
114.
A plane passing through the points $$\left( {0,\, - 1,\,0} \right)$$ and $$\left( {0,\,0,\,1} \right)$$ and making an angle $$\frac{\pi }{4}$$ with the plane $$y-z+5=0,$$ also passes through the point :
Let the required plane passing through the points $$\left( {0,\, - 1,\,0} \right)$$ and $$\left( {0,\,0,\,1} \right)$$ be $$\frac{x}{\lambda } + \frac{y}{{ - 1}} + \frac{z}{1} = 1$$ and the given plane is $$y-z+5=0$$
$$\eqalign{
& \therefore \,\,\,\cos \frac{\pi }{4} = \frac{{ - 1 - 1}}{{\sqrt {\left( {\frac{1}{{{\lambda ^2}}} + 1 + 1} \right)} \sqrt 2 }} \cr
& \Rightarrow {\lambda ^2} = \frac{1}{2} \cr
& \Rightarrow \frac{1}{\lambda } = \pm \sqrt 2 \cr} $$
Then, the equation of plane is $$ \pm \sqrt 2 x - y + z = 1$$
Then the point $$\left( {\sqrt 2 ,\,1,\,4} \right)$$ satisfies the equation of plane $$ - \sqrt 2 x - y + z = 1$$
115.
$$P\left( {a,\,b,\,c} \right);\,Q\left( {a + 2,\,b + 2,\,c - 2} \right)$$ and $$R\left( {a + 6,\,b + 6,\,c - 6} \right)$$ are collinear.
Consider the following statements : 1. $$R$$ divides $$PQ$$ internally in the ratio $$3 : 2$$ 2. $$R$$ divides $$PQ$$ externally in the ratio $$3 : 2$$ 3. $$Q$$ divides $$PR$$ internally in the ratio $$1 : 2$$
Which of the statements given above is/are correct ?
Given that $$P\left( {a,\,b,\,c} \right);\,Q\left( {a + 2,\,b + 2,\,c - 2} \right)$$ and $$R\left( {a + 6,\,b + 6,\,c - 6} \right)$$ are collinear, one point must divide, the other two points externally or internally.
Let $$R$$ divide $$P$$ and $$Q$$ in ratio $$k : 1$$
So, taking on $$x$$-co-ordinates
$$\eqalign{
& \frac{{k\left( {a + 2} \right) + a}}{{k + 1}} = a + 6 \cr
& \Rightarrow k\left( {a + 2} \right) + a = \left( {k + 1} \right)\left( {a + 6} \right) \cr
& \Rightarrow ka + 2k + a = ka + 6k + a + 6 \cr
& \Rightarrow - 4k = 6{\text{ or }}k = - \frac{3}{2} \cr} $$
Negative sign shows that this is external division in ratio $$3 : 2.$$
So, $$R$$ is divided $$P$$ and $$Q$$ externally in $$3 : 2$$ ratio.
Putting this value for $$y$$ - and $$z$$ - coordinates satisfied :
for $$y$$ - co-rdinate :
$$\frac{{3\left( {b + 2} \right) - 2b}}{{3 - 2}} = \frac{{3b + 6 - 2b}}{1} = b + 6$$
and for $$z$$-co-rdinate :
$$\frac{{3\left( {c - 2} \right) - 2c}}{{3 - 2}} = \frac{{3c - 6 - 2c}}{1} = c - b$$
Statement $$\left( 2 \right)$$ is correct.
Also, let $$Q$$ divide $$P$$ and $$R$$ in ratio $$P : 1$$
Taking an $$x$$-co-ordinate :
$$\eqalign{
& \frac{{p\left( {a + 6} \right) + a}}{{p + 1}} = a + 2 \cr
& \Rightarrow \frac{{p.a + 6p + a}}{{p + 1}} = a + 2 \cr
& \Rightarrow pa + 6p + a = pa + a + 2p + 2 \cr
& \Rightarrow 4p = 2 \cr
& \Rightarrow p = \frac{1}{2} \cr} $$
Positive sign shows but the division is internal and in the ratio $$1 : 2$$
Verifying for $$y$$-and $$z$$-co-ordinates, satisfies this results.
For $$y$$- co-ordinate,
$$\frac{{\left( {b + 6} \right) \times 1 + 2b}}{3} = \frac{{3b + 6}}{3} = b + 2$$
and for $$z$$-co-ordinate,
$$\frac{{c - 6 + 2c}}{3} = \frac{{3c - 6}}{3} = c - 2$$
values are satisfied. So, statement $$\left( 3 \right)$$ is correct.
116.
Let $$P\left( {3,\,2,\,6} \right)$$ be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$ is parallel to the plane $$x-4y+3z=1$$ is :
Given that $$P\left( {3,\,2,\,6} \right)$$ is a point in space and $$Q$$ is a point on line
$$\eqalign{
& \vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right) \cr
& {\text{or, }}\frac{{x - 1}}{{ - 3}} = \frac{{y + 1}}{1} = \frac{{z - 2}}{5} = \mu \cr} $$
Let coordinates of $$Q$$ be $$\left( { - 3\mu + 1,\,\mu - 1,\,5\mu + 2} \right)$$
$$\therefore\, \,d.r'{\text{s }}\,{\text{of }}\overrightarrow {PQ} = - 3\mu - 2,\,\mu - 3,\,5\mu - 4$$
As $$\overrightarrow {PQ} $$ is parallel to the plane $$x-4y+3z=1$$
$$\eqalign{
& \therefore 1.\left( { - 3\mu - 2} \right) - 4.\left( {\mu - 3} \right) + 3.\left( {5\mu - 4} \right) = 0 \cr
& \Rightarrow 8\mu = 2{\text{ or }}\mu = \frac{1}{4} \cr} $$
117.
If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$ and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$ intersect, then the value of $$k$$ is :
$$\eqalign{
& \frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4} = \lambda \cr
& \Rightarrow x = 2\lambda + 1,\,\,y = 3\lambda - 1{\text{ and }}\,z = 4\lambda + 1 \cr
& \frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1} = \mu \cr
& \Rightarrow x = 3 + \mu ,\,\,y = k + 2\mu \,\,{\text{and }}z = \mu \cr} $$
Since above lines intersect
$$\eqalign{
& \Rightarrow 2\lambda + 1 = 3 + \mu .....(1) \cr
& \,\,\,\,\,\,\,\,3\lambda - 1 = 2\mu + k.....(2) \cr
& \,\,\,\,\,\,\,\,\mu = 4\lambda + 1.....(3) \cr} $$
Solving (1) and (3) and putting the value of $$\lambda $$ and $$\mu $$ in (2) we get, $$k = \frac{9}{2}$$
118.
Points $$\left( {1,\,1,\,1} \right),\,\left( { - 2,\,4,\,1} \right),\,\left( { - 1,\,5,\,5} \right)$$ and $$\left( {2,\,2,\,5} \right)$$ are the vertices of a :
$$\eqalign{
& {\text{Let }}A = \left( {1,\,1,\,1} \right); \cr
& B = \left( { - 2,\,4,\,1} \right); \cr
& C = \left( { - 1,\,5,\,5} \right)\,\& \,D = \left( {2,\,2,\,5} \right) \cr
& {\text{Then, }}AB = \sqrt {9 + 9 + 0} = 3\sqrt 2 , \cr
& BC = \sqrt {1 + 1 + 16} = 3\sqrt 2 , \cr
& CD = 3\sqrt 2 {\text{ and }}AD = 3\sqrt 2 \cr
& {\text{Since, all sides are equal}}{\text{. Hence it is a square}}{\text{.}} \cr} $$
119.
The direction ratios of the normal to the plane passing through the points $$\left( {1,\, - 2,\,3} \right),\,\left( { - 1,\,2,\, - 1} \right)$$ and parallel to $$\frac{{x - 2}}{2} = \frac{{y + 1}}{3} = \frac{z}{4}$$ is :
Any plane through $$\left( {1,\, - 2,\,3} \right)$$ is
$$A\left( {x - 1} \right) + B\left( {y + 2} \right) + C\left( {z - 3} \right) = 0......\left( 1 \right)$$
The point $$\left( { - 1,\,2,\, - 1} \right)$$ lies in this plane if $$ - 2A + 4B - 4C = 0$$
i.e. if $$A - 2B + 2C = 0......\left( 2 \right)$$
The plane $$\left( 1 \right)$$ is parallel to the given line with direction ratio, $$2,\,3,\,4$$
if $$2A + 3B + 4C = 0......\left( 3 \right)$$
From $$\left( 2 \right)$$ and $$\left( 3 \right)$$, we have
$$\eqalign{
& \frac{A}{{ - 8 - 6}} = \frac{B}{{4 - 4}} = \frac{C}{{3 + 4}} \cr
& \Rightarrow \frac{A}{{ - 14}} = \frac{B}{0} = \frac{C}{7} \cr
& \Rightarrow A:B:C = 2:0: - 1 \cr} $$
120.
Let $$L$$ be the line of intersection of the planes $$2x+3y+z=1$$ and $$x+3y+2z=2.$$ If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then $$\cos \,\alpha $$ equals :