21. The distance between the line $$\vec r = 2\hat i - 2\hat j + 3\hat k + \lambda \left( {i - j + 4k} \right)$$       and the plane $$\vec r.\left( {\hat i + 5\hat j + \hat k} \right) = 5$$     is :

A $$\frac{{10}}{9}$$
B $$\frac{{10}}{{3\sqrt 3 }}$$
C $$\frac{3}{{10}}$$
D $$\frac{{10}}{3}$$
Answer :   $$\frac{{10}}{{3\sqrt 3 }}$$
Discuss Question

22. The ordered pair $$\left( {\lambda ,\,\mu } \right)$$  such that the points $$\left( {\lambda ,\,\mu ,\, - 6} \right),\,\left( {3,\,2,\, - 4} \right)$$     and $$\left( {9,\,8,\, - 10} \right)$$   become collinear is :

A $$\left( {3,\,4} \right)$$
B $$\left( {5,\,4} \right)$$
C $$\left( {4,\,5} \right)$$
D $$\left( {4,\,3} \right)$$
Answer :   $$\left( {5,\,4} \right)$$
Discuss Question

23. Under which one of the following conditions will the two planes $$x + y + z = 7$$    and $$\alpha x + \beta y + \gamma z = 3,$$     be parallel (but not coincident) ?

A $$\alpha = \beta = \gamma = 1\,\,\left( {{\text{only}}} \right)$$
B $$\alpha = \beta = \gamma = \frac{3}{7}\,\,\left( {{\text{only}}} \right)$$
C $$\alpha = \beta = \gamma $$
D none of the above
Answer :   $$\alpha = \beta = \gamma $$
Discuss Question

24. If a line makes an angle of $$\frac{\pi }{4}$$ with the positive directions of each of $$x$$-axis and $$y$$-axis, then the angle that the line makes with the positive direction of the $$z$$-axis is :

A $$\frac{\pi }{4}$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{6}$$
D $$\frac{\pi }{3}$$
Answer :   $$\frac{\pi }{2}$$
Discuss Question

25. The locus of a point, such that the sum of the squares of its distances from the planes $$x + y + z = 0,\,x - z = 0$$     and $$x - 2y + z = 0$$    is $$9$$, is :

A $${x^2} + {y^2} + {z^2} = 3$$
B $${x^2} + {y^2} + {z^2} = 6$$
C $${x^2} + {y^2} + {z^2} = 9$$
D $${x^2} + {y^2} + {z^2} = 12$$
Answer :   $${x^2} + {y^2} + {z^2} = 9$$
Discuss Question

26. If $$\left( {2,\,3,\,5} \right)$$  is one end of a diameter of the sphere $${x^2} + {y^2} + {z^2} - 6x - 12y - 2z + 20 = 0,$$        then the coordinates of the other end of the diameter are :

A $$\left( {4,\,3,\,5} \right)$$
B $$\left( {4,\,3,\, - 3} \right)$$
C $$\left( {4,\,9,\, - 3} \right)$$
D $$\left( {4,\, - 3,\,3} \right)$$
Answer :   $$\left( {4,\,9,\, - 3} \right)$$
Discuss Question

27. What is the perpendicular distance of the point $$P\left( {6,\,7,\,8} \right)$$   from $$xy$$ -plane ?

A 8
B 7
C 6
D none of these
Answer :   8
Discuss Question

28. The d.r. of normal to the plane through $$\left( {1,\,0,\,0} \right),\,\left( {0,\,1,\,0} \right)$$     which makes an angle $$\frac{\pi }{4}$$ with plane $$x + y = 3$$   are :

A $$1,\,\sqrt 2 ,\,1$$
B $$1,\,1,\,\sqrt 2$$
C $$1,\,1,\,2$$
D $$\sqrt 2 ,\,1,\,1$$
Answer :   $$1,\,1,\,\sqrt 2$$
Discuss Question

29. If the line $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$     and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then $$k$$ is equal to :

A $$-1$$
B $$\frac{2}{9}$$
C $$\frac{9}{2}$$
D $$0$$
Answer :   $$\frac{9}{2}$$
Discuss Question

30. The equation of the line passing through $$\left( { - 4,\,3,\,1} \right),$$   parallel to the plane $$x+2y-z-5=0$$     and intersecting the line $$\frac{{x + 1}}{{ - 3}} = \frac{{y - 3}}{2} = \frac{{z - 2}}{{ - 1}}$$     is :

A $$\frac{{x - 4}}{2} = \frac{{y + 3}}{1} = \frac{{z + 1}}{4}$$
B $$\frac{{x + 4}}{1} = \frac{{y - 3}}{1} = \frac{{z - 1}}{3}$$
C $$\frac{{x + 4}}{3} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{1}$$
D $$\frac{{x + 4}}{{ - 1}} = \frac{{y - 3}}{1} = \frac{{z - 1}}{1}$$
Answer :   $$\frac{{x + 4}}{3} = \frac{{y - 3}}{{ - 1}} = \frac{{z - 1}}{1}$$
Discuss Question


Practice More MCQ Question on Maths Section