121. If $$A,\,B$$  and $$C$$ are three finite sets, then what is $$\left[ {\left( {A \cup B} \right) \cap C} \right]'$$    equal to ?

A $$A' \cup B' \cap C'$$
B $$A' \cap B' \cap C'$$
C $$A' \cap B' \cup C'$$
D $$A \cap B \cap C$$
Answer :   $$A' \cap B' \cup C'$$
Discuss Question

122. A survey shows that $$61\% ,\,46\% $$   and $$29\%$$  of the people watched "3 idiots", "Rajneeti" and "Avatar" respectively. $$25\%$$  people watched exactly two of the three movies and $$3\%$$ watched none. What percentage of people watched all the three movies ?

A $$39\%$$
B $$11\%$$
C $$14\%$$
D $$7\%$$
Answer :   $$7\%$$
Discuss Question

123. Let $$f\left( x \right) = - 1 + \left| {x - 1} \right|,\, - 1 \leqslant x \leqslant 3$$        and $$ \leqslant g\left( x \right) = 2 - \left| {x + 1} \right|,\, - 2 \leqslant x \leqslant 2,$$        then $$\left( {fog} \right)\left( x \right)$$   is equal to :

A \[\left\{ \begin{array}{l} x + 1\,\,\,\,\, - 2 \le x \le 0\\ x - 1\,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]
B \[\left\{ \begin{array}{l} x - 1\,\,\,\,\, - 2 \le x \le 0\\ x + 1\,\,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]
C \[\left\{ \begin{array}{l} - 1 - x\,\,\,\,\, - 2 \le x \le 0\\ \,\,\,x - 1\,\,\,\,\,\,\,\,\,\,\,\,0 < x \le 2 \end{array} \right.\]
D none of these
Answer :   none of these
Discuss Question

124. In a class of $$30$$  pupils, $$12$$ take needle work, $$16$$  take physics and $$18$$ take history. If all the $$30$$  students take at least one subjects take and no one takes all three then the number of pupils taking $$2$$ subjects is :

A 16
B 6
C 8
D 20
Answer :   16
Discuss Question

125. Let $$A$$ and $$B$$ be two sets. Then $$\left( {A \cup B} \right)' \cup \left( {A' \cap B} \right)$$    is equal to :

A $$A'$$
B $$A$$
C $$B'$$
D none of these
Answer :   $$A'$$
Discuss Question

126. The inverse of $$f\left( x \right) = \frac{2}{3}\frac{{{{10}^x} - {{10}^{ - x}}}}{{{{10}^x} + {{10}^{ - x}}}}$$     is :

A $$\frac{1}{3}\,{\log _{10}}\frac{{1 + x}}{{1 - x}}$$
B $$\frac{1}{2}\,{\log _{10}}\frac{{2 + 3x}}{{2 - 3x}}$$
C $$\frac{1}{3}\,{\log _{10}}\frac{{2 + 3x}}{{2 - 3x}}$$
D $$\frac{1}{6}\,{\log _{10}}\frac{{2 - 3x}}{{2 + 3x}}$$
Answer :   $$\frac{1}{2}\,{\log _{10}}\frac{{2 + 3x}}{{2 - 3x}}$$
Discuss Question

127. Let $$n\left( A \right) = 4$$   and $$n\left( B \right) = 6.$$   The number of one to one functions from A to B is :

A $$24$$
B $$60$$
C $$120$$
D $$360$$
Answer :   $$360$$
Discuss Question

128. Let $$f\left( x \right) = \frac{x}{{1 + {x^2}}}$$   and $$g\left( x \right) = \frac{{{e^{ - x}}}}{{1 + \left[ x \right]}},$$    where $$\left[ x \right]$$ is the greatest integer less than or equal to $$x.$$ Then,

A $$D\left( {f + g} \right) = R - \left[ { - 2,\,0} \right)$$
B $$D\left( {f + g} \right) = R - \left[ { - 1,\,0} \right)$$
C $$R\left( f \right) \cap R\left( g \right) = \left[ { - 2,\,\frac{1}{2}} \right]$$
D None of these
Answer :   None of these
Discuss Question

129. In a school, there are $$20$$  teachers who teach Mathematics or Physics of these, $$12$$ teach Mathematics and $$4$$ teach both Maths and Physics. Then the number of teachers teaching only Physics are :

A $$4$$
B $$8$$
C $$12$$
D $$16$$
Answer :   $$8$$
Discuss Question

130. Let $$R$$ be a relation on $${\bf{N}} \times {\bf{N}}$$  defined by $$\left( {a,\,b} \right)R\left( {c,\,d} \right) \Rightarrow ad\left( {b + c} \right) = bc\left( {a + d} \right).\,R$$         is :

A a particle order relation
B an equivalence relation
C an identity relation
D none of these
Answer :   an equivalence relation
Discuss Question


Practice More MCQ Question on Maths Section