61. Let $$f:\left( {4,\,6} \right) \to \left( {6,\,8} \right)$$    be a function defined by $$f\left( x \right) = x + \left[ {\frac{x}{2}} \right]$$   (where [.] denotes the greatest integer function), then $${f^{ - 1}}\left( x \right)$$  is equal to :

A $$x - \left[ {\frac{x}{2}} \right]$$
B $$ - x - 2$$
C $$x - 2$$
D $$\frac{1}{{x + \left[ {\frac{x}{2}} \right]}}$$
Answer :   $$x - 2$$
Discuss Question

62. In a city 20 percent of the population travels by car, 50 percent travels by bus and 10 percent travels by both car and bus. Then person travelling by car or bus is :

A 80 percent
B 40 percent
C 60 percent
D 70 percent
Answer :   60 percent
Discuss Question

63. Let a relation $$R$$ in the set $$R$$ of real numbers be defined as $$\left( {a,\,b} \right)\, \in \,R$$   if and only if $$1 + ab > 0$$   for all $$a,\,b\, \in \,R.$$
The relation $$R$$ is :

A reflexive and symmetric
B symmetric and transitive
C only transitive
D an equivalence relation
Answer :   reflexive and symmetric
Discuss Question

64. If $$f\left( x \right) = 2x + \left| x \right|,\,g\left( x \right) = \frac{1}{3}\left( {2x - \left| x \right|} \right)$$        and $$h\left( x \right) = f\left( {g\left( x \right)} \right),$$    then domain of $${\sin ^{ - 1}}\underbrace {\left( {h\left( {h\left( {h\left( {h.....h\left( x \right).....} \right)} \right)} \right)} \right)}_{n{\text{ times}}}$$        is :

A $$\left[ { - 1,\,1} \right]$$
B $$\left[ { - 1,\, - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2},\,1} \right]$$
C $$\left[ { - 1,\, - \frac{1}{2}} \right]$$
D $$\left[ {\frac{1}{2},\,1} \right]$$
Answer :   $$\left[ { - 1,\,1} \right]$$
Discuss Question

65. If $$f\left( x \right) = {\sin ^2}x + {\sin ^2}\left( {x + \frac{\pi }{3}} \right) + \cos \,x\,\cos \left( {x + \frac{\pi }{3}} \right)$$          and $$g\left( {\frac{5}{4}} \right) = 1,$$   then $$gof\left( x \right) = ?$$

A $$1$$
B $$0$$
C $$\sin \,x$$
D none
Answer :   $$1$$
Discuss Question

66. If $$f\left( x \right) = \left| {x - 2} \right|$$   and $$g\left( x \right) = f\left[ {f\left( x \right)} \right],$$    then for $$x > 20,\,g'\left( x \right)$$   is equal to :

A $$ - 1$$
B $$1$$
C $$2$$
D none of these
Answer :   $$1$$
Discuss Question

67. If $$A = \left\{ {1,\,2} \right\},\,B = \left\{ {1,\,3} \right\},$$      then $$\left( {A \times B} \right) \cup \left( {B \times A} \right)$$    is equal to :

A $$\left\{ {\left( {1,\,3} \right),\,\left( {2,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {1,\,1} \right),\,\left( {2,\,1} \right),\,\left( {1,\,2} \right)} \right\}$$
B $$\left\{ {\left( {1,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {2,\,3} \right)} \right\}$$
C $$\left\{ {\left( {1,\,3} \right),\,\left( {2,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {1,\,1} \right)} \right\}$$
D None of these
Answer :   $$\left\{ {\left( {1,\,3} \right),\,\left( {2,\,3} \right),\,\left( {3,\,1} \right),\,\left( {3,\,2} \right),\,\left( {1,\,1} \right),\,\left( {2,\,1} \right),\,\left( {1,\,2} \right)} \right\}$$
Discuss Question

68. Of the members of three athletic teams in a school, $$21$$ are in the cricket team, $$26$$ are in the hockey team and $$29$$ are in the football team. Among them, $$14$$ play hockey and cricket, $$15$$ play hockey and football, and $$12$$ play football and cricket. Eight play all the three games. The total number of members in the three athletic teams is :

A $$43$$
B $$76$$
C $$49$$
D none of these
Answer :   $$43$$
Discuss Question

69. Let function $$f:R \to R$$   be defined by $$f\left( x \right) = 2x + \sin \,x$$    for $$x\, \in \,R$$  then $$f$$ is :

A one-one and onto
B one-one but NOT onto
C onto but NOT one-one
D neither one-one nor onto
Answer :   one-one and onto
Discuss Question

70. Let $$P = \left\{ {\left( {x,\,y} \right):\left| {{x^2} + {y^2}} \right| = 1,\,x,\,y\, \in \,R\,} \right\}.$$        Then $$P$$ is :

A Reflexive
B Symmetric
C Transitive
D Anti-symmetric
Answer :   Symmetric
Discuss Question


Practice More MCQ Question on Maths Section