71. Let $$A = \left\{ {p,\,q,\,r} \right\}.$$   Which of the following is an equivalence relation in $$A\,?$$

A $${R_1} = \left\{ {\left( {p,\,q} \right),\left( {q,\,r} \right),\left( {p,\,r} \right),\left( {p,\,q} \right)} \right\}$$
B $${R_2} = \left\{ {\left( {r,\,q} \right),\left( {r,\,p} \right),\left( {r,\,r} \right),\left( {q,\,q} \right)} \right\}$$
C $${R_3} = \left\{ {\left( {p,\,p} \right),\left( {q,\,q} \right),\left( {r,\,r} \right),\left( {p,\,q} \right)} \right\}$$
D None of these
Answer :   None of these
Discuss Question

72. Let $$A$$ and $$B$$ be two sets such that $$A \cup B = A.$$   Then $$A \cap B$$  is equal to :

A $$\phi $$
B $$B$$
C $$A$$
D none of these
E
Answer :   $$B$$
Discuss Question

73. Consider the following relations:
$$R$$ = {($$x, y$$ ) | $$x, y$$  are real numbers and $$x = w y$$  for some rational number $$w$$} ;
$$S =$$  { $$\left( {\frac{m}{n},\frac{p}{q}} \right)$$ | $$m, n, p$$  and $$q$$ are integers such that $$n, q \ne 0$$   and $$qm = pn$$  }.
Then

A Neither $$R$$ nor $$S$$ is an equivalence relation
B $$S$$ is an equivalence relation but $$R$$ is not an equivalence relation
C $$R$$ and $$S$$ both are equivalence relations
D $$R$$ is an equivalence relation but $$S$$ is not an equivalence relation
Answer :   $$S$$ is an equivalence relation but $$R$$ is not an equivalence relation
Discuss Question

74. Let $$A = \left\{ {1,\,2} \right\},\,B = \left\{ {3,\,4} \right\}.$$      Then, number of subsets of $$A \times B$$  is :

A $$4$$
B $$8$$
C $$18$$
D $$16$$
Answer :   $$16$$
Discuss Question

75. In a survey of 400 students in a school, 100 were listed as taking apple juice, 150 as taking orange juice and 75 were listed as talking both apple as well as orange juice.
Then which of the following is/are true ?
I. 150 students are taking at least one juice.
II. 225 students were taking neither apple juice nor orange juice.

A Only I is true
B Only II is true
C Both I and II are true
D none of these
Answer :   Only II is true
Discuss Question

76. Let $$A = Z \cup \left\{ {\sqrt 2 } \right\}.$$    Define a relation $$R$$ in $$A$$ by $$aRb$$  if and only if $$a + b\, \in \,Z.$$   The relation $$R$$ is :

A reflexive
B symmetric and transitive
C only transitive
D none of these
Answer :   symmetric and transitive
Discuss Question

77. Let $$A$$ and $$B$$ two sets containing 2 elements and 4 elements respectively. The number of subsets of $$A \times B$$  having 3 or more elements is

A 256
B 220
C 219
D 211
Answer :   219
Discuss Question

78. Let $$R = \left\{ {\left( {1,\,3} \right),\left( {4,\,2} \right),\left( {2,\,4} \right),\left( {2,\,3} \right),\left( {3,\,1} \right)} \right\}$$        be a relation on the set $$A = \left\{ {1,\,2,\,3,\,4} \right\}.$$    The relation $$R$$ is :

A reflexive
B transitive
C not symmetric
D a function
Answer :   not symmetric
Discuss Question

79. If $$\mu $$ is the universal set and $$P$$ is a subset of $$\mu ,$$ then what is $$P \cap \left\{ {\left( {P - \mu } \right) \cup \left( {\mu - P} \right)} \right\}$$     equal to ?

A $$\phi $$
B $$P'$$
C $$m$$
D $$P$$
Answer :   $$\phi $$
Discuss Question

80. Which of the following is/are true ?
I. If $$A$$ is a subset of the universal set $$U,$$ then its complement $$A'$$ is also a subset of $$U$$.
II. If $$U = \left\{ {1,\,2,\,3,.....,\,10} \right\}$$     and $$A = \left\{ {1,\,3,\,5,\,7,\,9} \right\},$$    then $$\left( {A'} \right)' = A.$$

A Only I is true
B Only II is true
C Both I and II are true
D None of these
Answer :   Both I and II are true
Discuss Question


Practice More MCQ Question on Maths Section