$${x^2} + \lambda x + \mu = $$ integer for all integer $$x.$$
When $$x = 0,\,\,{x^2} + \lambda x + \mu = 0 = $$ integer.
So, $$x\left( {x + \lambda } \right)$$ is an integer for all integral values of $$x.$$
Therefore, $$\lambda $$ is an integer.
84.
The range of the function $$f\left( x \right) = \left| {x - 1} \right| + \left| {x - 2} \right|,\, - 1 \leqslant x \leqslant 3,$$ is :
If $$x < 1,\,f\left( x \right) = - \left( {x - 1} \right) - \left( {x - 2} \right) = - 2x + 3.$$ In this interval, $$f\left( x \right)$$ is decreasing.
If $$1 \leqslant x < 2,\,f\left( x \right) = x - 1 - \left( {x - 2} \right) = 1$$
In this interval, $$f\left( x \right)$$ is constant.
If $$2 \leqslant x \leqslant 3,\,f\left( x \right) = x - 1 + x - 2 = 2x - 3$$
In this interval, $$f\left( x \right)$$ is increasing.
$$\therefore \max \,f\left( x \right) = $$ the greatest among $$f\left( { - 1} \right)$$ and $$f\left( 3 \right) = 5,\,\,\min \,f\left( x \right) = f\left( 1 \right) = 1$$
So, range $$ = \left[ {1,\,5} \right].$$
85.
If $$f:{\bf{R}} \to {\bf{R}}\,\& \,g:{\bf{R}} \to {\bf{R}}$$ be two given function, then $$2\,\min \left\{ {f\left( x \right) - g\left( x \right),\,0} \right\}$$ equals :
A
$$f\left( x \right) + g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
B
$$f\left( x \right) + g\left( x \right) + \left| {g\left( x \right) - f\left( x \right)} \right|$$
C
$$f\left( x \right) - g\left( x \right) + \left| {g\left( x \right) - f\left( x \right)} \right|$$
D
$$f\left( x \right) - g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
Answer :
$$f\left( x \right) - g\left( x \right) - \left| {g\left( x \right) - f\left( x \right)} \right|$$
$$f\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)$$
$$\therefore f\left( 1 \right) = f\left( 2 \right) = f\left( 3 \right) = 0.$$ So, the function is many-one.
Clearly, for $$x < 0,\,f\left( x \right) < 0$$ and goes on decreasing as $$x$$ decreases.
For $$x > 3,\,f\left( x \right) > 0$$ and goes on increasing as $$x$$ increases.
$$\therefore \,f\left( x \right)$$ can have all real values. So, $$f$$ is onto.
87.
Which of the following statements is incorrect :
A
$$x\,\operatorname{sgn} \,x = \left| x \right|$$
B
$$\left| x \right|\operatorname{sgn} \,x = x$$
C
$$x\left( {\operatorname{sgn} \,x} \right)\left( {\operatorname{sgn} \,x} \right) = x$$
D
$$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$
Answer :
$$\left| x \right|{\left( {\operatorname{sgn} \,x} \right)^3} = \left| x \right|$$
From $$E$$ to $$F$$ we can define, in all, $$2 \times 2 \times 2 \times 2 = 16$$ functions (2 options for each element of $$E$$ ) out of which 2 are into, when all the elements of $$E$$ either map to 1 or to 2.
∴ No. of onto functions $$= 16 - 2 = 14$$
89.
If $$f\left( {x + 1} \right) = {x^2} - 3x + 2,$$ then $$f\left( x \right)$$ is equal to :