141.
Let $$f:N \to Y$$ be a function defined as $$f\left( x \right) = 4x + 3$$ where $$Y = \left\{ {y \in N:y = 4x + 3\,{\text{for}}\,{\text{some}}\,x \in N} \right\}.$$
Show that $$f$$ is invertible and its inverse is
A
$$g\left( y \right) = \frac{{3y + 4}}{3}$$
B
$$g\left( y \right) = 4 + \frac{{y + 3}}{4}$$
C
$$g\left( y \right) = \frac{{y + 3}}{4}$$
D
$$g\left( y \right) = \frac{{y - 3}}{4}$$
Answer :
$$g\left( y \right) = \frac{{y - 3}}{4}$$
Clearly $$f$$ is one one and onto, so invertible
$$\eqalign{
& {\text{Also}}\,f\left( x \right) = 4x + 3 = y \Rightarrow x = \frac{{y - 3}}{4} \cr
& \therefore g\left( y \right) = \frac{{y - 3}}{4} \cr} $$
142.
Let $$f\left( x \right) = \frac{x}{{1 - x}}$$ and $$'a'$$ be a real number. If $${x_0} = a,\,{x_1} = f\left( {{x_0}} \right),\,{x_2} = f\left( {{x_1}} \right),\,{x_3} = f\left( {{x_2}} \right).....$$ If $${x_{2009}} = 1,$$ then the value of $$a$$ is :
$$\eqalign{
& {\text{Given}}\,{\text{that}}\,f\left( x \right) = 2x + \sin x,\,\,x \in R \Rightarrow f'\left( x \right) = 2 + \cos x \cr
& {\text{But}}\, - 1 \leqslant \cos x \leqslant 1 \Rightarrow \,1 \leqslant 2 + \cos x \leqslant 3 \Rightarrow 1 \leqslant 2 + \cos x \leqslant 3 \cr
& \therefore f'\left( x \right) > 0,\forall x \in R \cr} $$
$$ \Rightarrow f\left( x \right)$$ is strictly increasing and hence one-one
Also as $$x \to \infty ,f\left( x \right) \to \infty \,{\text{and}}\,x \to - \infty ,f\left( x \right) \to - \infty $$
$$\therefore $$ Range of $$f\left( x \right) = R = $$ domain of $$f\left( x \right) \Rightarrow f\left( x \right)$$ is onto.
Thus, $$f\left( x \right)$$ is one-one and onto.
144.
Domain of definition of the function $$f\left( x \right) = \frac{3}{{4 - {x^2}}} + {\log _{10}}\left( {{x^3} - x} \right),$$ is
Given that $$f:\left[ {0,\infty } \right) \to \left[ {0,\infty } \right)$$
Such that $$\,f\left( x \right) = \frac{x}{{1 + x}}$$
Then $$f'\left( x \right) = \frac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}} = \frac{1}{{{{\left( {1 + x} \right)}^2}}} > 0\forall x$$
$$\therefore f$$ is an increasing function $$ \Rightarrow f$$ is one-one.
Also, $${D_f} = \left[ {0,\infty } \right)$$
And for range let $$\frac{x}{{1 + x}} = y \Rightarrow x = \frac{y}{{1 - y}}$$
$$x \geqslant 0 \Rightarrow 0 \leqslant y < 1$$
$$\therefore {R_f} = \left[ {0,1} \right) \ne \,{\text{Co - domain}}$$
$$\therefore f$$ is not onto.
147.
The range of the function $$f\left( x \right) = {x^2} + \frac{1}{{{x^2} + 1}}$$ is :
Let us consider a graph symm. with respect to line $$x = 2$$ as shown in the figure.
$$\eqalign{
& {\text{From the figure }}f\left( {{x_1}} \right) = f\left( {{x_2}} \right),\,{\text{where}}\,{x_1} = 2 - x\,{\text{and}}\,{x_2} = 2 + x \cr
& \therefore f\left( {2 - x} \right) = f\left( {2 + x} \right) \cr} $$
149.
If $$f\left( x \right) = \frac{{{2^x} + {2^{ - x}}}}{2},$$ then $$f\left( {x + y} \right).f\left( {x - y} \right)$$ is equal to :