41.
If the functions $$f\left( x \right)$$ and $$g\left( x \right)$$ are defined on $$R \to R$$ Such that \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{0,}\\
{x,}
\end{array}} \right.\begin{array}{*{20}{c}}
{x \in {\rm{ rational}}}\\
{x \in {\rm{ irrational}}}
\end{array}\,;\,g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{0,}\\
{x,}
\end{array}} \right.\,\begin{array}{*{20}{c}}
{x \in {\rm{ irrational}}}\\
{x \in {\rm{ rational}}}
\end{array}\] then $$\left( {f - g} \right)\left( x \right)$$ is
We are given that
\[\begin{array}{l}
f:R \to R\,{\rm{such}}\,{\rm{that}}\,f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{0,}\\
{x,}
\end{array}} \right.\begin{array}{*{20}{c}}
{x \in {\rm{ rational}}}\\
{x \in {\rm{ irrational}}}
\end{array}\\
g:R \to R\,{\rm{such}}\,{\rm{that}}\,g\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{0,}\\
{x,}
\end{array}} \right.\,\begin{array}{*{20}{c}}
{x \in {\rm{ irrational}}}\\
{x \in {\rm{ rational}}}
\end{array}
\end{array}\]
$$\therefore \left( {f - g} \right):R \to R\,{\text{such}}\,{\text{that}}\,$$
\[\left( {f - g} \right)\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{ - x,}\\
x
\end{array}\,\,\begin{array}{*{20}{c}}
{{\rm{if}}}\\
{{\rm{if}}}
\end{array}\,\begin{array}{*{20}{c}}
{x \in {\rm{ rational}}}\\
{x \in {\rm{ irrational}}}
\end{array}} \right.\]
Since $$f - g:R \to R$$ for any $$x$$ there is only one value of $$\left( {f\left( x \right) - g\left( x \right)} \right)$$ whether $$x$$ is rational or irrational. Moreover as $$x \in R,f\left( x \right) - g\left( x \right)$$ also belongs to $$R.$$ Therefore, $$\left( {f - g} \right)$$ is one-one onto.
42.
Domain of definition of the function $$f\left( x \right) = \sqrt {{{\sin }^{ - 1}}\left( {2x} \right) + \frac{\pi }{6}} $$ for real valued $$x,$$ is
A function $$y = f\left( x \right)$$ is symmetrical about the origin if $$\left( {x,\,y} \right)$$ is on the graph implies that $$\left( { - x,\, - y} \right)$$ is also on the graph, i.e., $$ - y = f\left( { - x} \right).$$ In other words, $$f\left( { - x} \right) = - f\left( x \right).$$
45.
Let $$f\left( x \right) = x\left( {2 - x} \right),\,0 \leqslant x \leqslant 2.$$ If the definition of $$f$$ is extended over the set $$R - \left[ {0,\,2} \right]$$ by $$f\left( {x + 2} \right) = f\left( x \right)$$ then $$f$$ is a :
In $$R - \left[ {0,\,2} \right],\,f\left( {x + 2} \right) = f\left( x \right)$$
The graph of $$f\left( x \right) = x\left( {2 - x} \right),\,0 \leqslant x \leqslant 2$$ is shown.
Clearly, $$f$$ is a periodic function of period 2.
46.
The domain of the function $$f\left( x \right) = \frac{{{{\sin }^{ - 1}}\left( {x - 3} \right)}}{{\sqrt {9 - {x^2}} }}\,$$ is
$$\eqalign{
& x > 0{\text{ and }}{\log _e}x \ne 0 \cr
& \therefore x > 0{\text{ and }}x \ne 1 \cr
& \therefore {\text{domain}} = \left( {0,\,1} \right) \cup \left( {1,\, + \infty } \right) \cr} $$
48.
Let $$f\left( x \right)$$ be defined for all $$x > 0$$ and be continues. Let $$f\left( x \right)$$ satisfy $$f\left( {\frac{x}{y}} \right) = f\left( x \right) - f\left( y \right)$$ for all $${x,y}$$ and $$f\left( e \right) = 1.$$ Then
A
$$f\left( x \right)$$ is bounded
B
$$f\left( {\frac{1}{x}} \right) \to 0\,{\text{as}}\,x \to 0$$
C
$$x\,f\left( x \right) \to 1\,{\text{as}}\,x \to 0$$
$$f\left( x \right)$$ is continuous and defined for all $$x > 0$$ and $$f\left( {\frac{x}{y}} \right) = f\left( x \right) - f\left( y \right)$$
Also $$f\left( e \right) = 1$$
$$ \Rightarrow $$ Clearly $$f\left( x \right) = \ell n\,x$$ which satisfies all these properties
$$\therefore f\left( x \right) = \ell n\,x$$
49.
For $$x \in R - \left\{ {0,1} \right\},$$ let $$\,{f_1}\left( x \right) = \frac{1}{x},\,{f_2}\left( x \right) = 1 - x$$ and $${f_3}\left( x \right) = \frac{1}{{1 - x}}$$ be three given functions. If a function, $$J\left( x \right)$$ satisfies $$\left( {{f_2}oJo{f_1}} \right)\left( x \right) = {\text{ }}{f_3}\left( x \right)$$ then $$J\left( x \right)$$ is equal to
The given relation is
$$\eqalign{
& \left( {{f_2}oJo{f_1}} \right)\left( x \right) = {f_3}\left( x \right) = \frac{1}{{1 - x}} \cr
& \Rightarrow \left( {{f_2}oJ} \right)\left( {{f_1}\left( x \right)} \right) = \frac{1}{{1 - x}} \cr
& \Rightarrow \left( {{f_2}oJ} \right) = \left( {\frac{1}{x}} \right) = \frac{1}{{1 - x}}\,\left[ {\because {f_1}\left( x \right) = \frac{1}{x}} \right] \cr
& \Rightarrow {f_2}\left( {J\left( {\frac{1}{x}} \right)} \right) = \frac{1}{{1 - x}} \cr
& \Rightarrow \left( {{f_2}J\left( x \right)} \right) = \frac{1}{{1 - \frac{1}{x}}} = \frac{x}{{x - 1}}\left[ {\frac{1}{x}{\text{ is replaced by }}x} \right] \cr
& \Rightarrow 1 - J\left( x \right) = \frac{x}{{x - 1}}\left[ {\lambda {f_2}\left( x \right) = 1 - x} \right] \cr
& \therefore J\left( x \right) = 1 - \frac{x}{{x - 1}} = \frac{1}{{1 - x}} = {f_3}\left( x \right) \cr} $$
50.
$$X$$ and $$Y$$ are two sets and $$f:X \to Y.$$ If $$\left\{ {f\left( c \right) = y;c \subset X,y \subset Y} \right\}$$ and $$\left\{ {{f^{ - 1}}\left( d \right) = x:d \subset Y,x \subset X} \right\},$$ then the true statement is
A
$$f\left( {{f^{ - 1}}\left( b \right)} \right) = b$$
B
$${f^{ - 1}}\left( {f\left( a \right)} \right) = a$$
C
$$f\left( {{f^{ - 1}}\left( b \right)} \right) = b,b \subset y$$
D
$${f^{ - 1}}\left( {f\left( a \right)} \right) = a,a \subset x$$
Given that $$X$$ and $$Y$$ are two sets and $$f:X \to Y.$$
$$\eqalign{
& \left\{ {f\left( c \right) = y;c \subset X,y \subset Y} \right\}\,{\text{and}} \cr
& \left\{ {{f^{ - 1}}\left( d \right) = x:d \subset Y,x \subset X} \right\} \cr} $$
The pictorial representation of given information is as shown:
$$\eqalign{
& {\text{Since }}{f^{ - 1}}\left( d \right) = x \Rightarrow f\left( x \right) = d{\text{ Now if }}a \subset x \cr
& \Rightarrow f\left( a \right) \subset f\left( x \right) = d \Rightarrow \,{f^{ - 1}}\left[ {f\left( a \right)} \right] = a \cr
& \therefore {f^{ - 1}}\left( {f\left( a \right)} \right) = a,a \subset x{\text{ is the correct option}}{\text{.}} \cr} $$