41. If the functions $$f\left( x \right)$$  and $$g\left( x \right)$$  are defined on $$R \to R$$   Such that \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {0,}\\ {x,} \end{array}} \right.\begin{array}{*{20}{c}} {x \in {\rm{ rational}}}\\ {x \in {\rm{ irrational}}} \end{array}\,;\,g\left( x \right) = \left\{ {\begin{array}{*{20}{c}} {0,}\\ {x,} \end{array}} \right.\,\begin{array}{*{20}{c}} {x \in {\rm{ irrational}}}\\ {x \in {\rm{ rational}}} \end{array}\]           then $$\left( {f - g} \right)\left( x \right)$$   is

A one-one & onto
B neither one-one nor onto
C one-one but not onto
D onto but not one-one
Answer :   one-one & onto
Discuss Question

42. Domain of definition of the function $$f\left( x \right) = \sqrt {{{\sin }^{ - 1}}\left( {2x} \right) + \frac{\pi }{6}} $$      for real valued $$x,$$  is

A $$\left[ { - \frac{1}{4},\frac{1}{2}} \right]$$
B $$\left[ { - \frac{1}{2},\frac{1}{2}} \right]$$
C $$\left( { - \frac{1}{2},\frac{1}{2}} \right)$$
D $$\left[ { - \frac{1}{4},\frac{1}{4}} \right]$$
Answer :   $$\left[ { - \frac{1}{4},\frac{1}{2}} \right]$$
Discuss Question

43. If $$af\left( {x + 1} \right) + bf\left( {\frac{1}{{x + 1}}} \right) = x,\,x \ne - 1,\,a \ne b$$         then $$f\left( 2 \right)$$  is equal to :

A $$\frac{{2a + b}}{{2\left( {{a^2} - {b^2}} \right)}}$$
B $$\frac{a}{{{a^2} - {b^2}}}$$
C $$\frac{{a + 2b}}{{{a^2} - {b^2}}}$$
D none of these
Answer :   $$\frac{{2a + b}}{{2\left( {{a^2} - {b^2}} \right)}}$$
Discuss Question

44. A function whose graph is symmetrical about the origin is given by :

A $$f\left( x \right) = {e^x} + {e^{ - x}}$$
B $$f\left( x \right) = {\log _e}x$$
C $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
D none of these
Answer :   $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
Discuss Question

45. Let $$f\left( x \right) = x\left( {2 - x} \right),\,0 \leqslant x \leqslant 2.$$      If the definition of $$f$$ is extended over the set $$R - \left[ {0,\,2} \right]$$   by $$f\left( {x + 2} \right) = f\left( x \right)$$    then $$f$$ is a :

A periodic function of period 1
B non-periodic function
C periodic function of period 2
D periodic function of period $$\frac{1}{2}$$
Answer :   periodic function of period 2
Discuss Question

46. The domain of the function $$f\left( x \right) = \frac{{{{\sin }^{ - 1}}\left( {x - 3} \right)}}{{\sqrt {9 - {x^2}} }}\,$$    is

A [1, 2]
B $$\left[ {2,3} \right)$$
C [1, 2]
D [2, 3]
Answer :   $$\left[ {2,3} \right)$$
Discuss Question

47. The domain of the real-valued function $$f\left( x \right) = {\log _e}\left| {{{\log }_e}x} \right|$$    is :

A $$\left( {1,\, + \infty } \right)$$
B $$\left( {0,\, + \infty } \right)$$
C $$\left( {e,\, + \infty } \right)$$
D none of these
Answer :   none of these
Discuss Question

48. Let $$f\left( x \right)$$ be defined for all $$x > 0$$  and be continues. Let $$f\left( x \right)$$ satisfy $$f\left( {\frac{x}{y}} \right) = f\left( x \right) - f\left( y \right)$$     for all $${x,y}$$  and $$f\left( e \right) = 1.$$   Then

A $$f\left( x \right)$$ is bounded
B $$f\left( {\frac{1}{x}} \right) \to 0\,{\text{as}}\,x \to 0$$
C $$x\,f\left( x \right) \to 1\,{\text{as}}\,x \to 0$$
D $$f\left( x \right) = \ln x$$
Answer :   $$f\left( x \right) = \ln x$$
Discuss Question

49. For $$x \in R - \left\{ {0,1} \right\},$$    let $$\,{f_1}\left( x \right) = \frac{1}{x},\,{f_2}\left( x \right) = 1 - x$$       and $${f_3}\left( x \right) = \frac{1}{{1 - x}}$$    be three given functions. If a function, $$J\left( x \right)$$  satisfies $$\left( {{f_2}oJo{f_1}} \right)\left( x \right) = {\text{ }}{f_3}\left( x \right)$$     then $$J\left( x \right)$$  is equal to

A $${f_3}(x)$$
B $${f_4}(x)$$
C $${f_2}(x)$$
D $${f_1}(x)$$
Answer :   $${f_3}(x)$$
Discuss Question

50. $$X$$ and $$Y$$ are two sets and $$f:X \to Y.$$   If $$\left\{ {f\left( c \right) = y;c \subset X,y \subset Y} \right\}$$      and $$\left\{ {{f^{ - 1}}\left( d \right) = x:d \subset Y,x \subset X} \right\},$$      then the true statement is

A $$f\left( {{f^{ - 1}}\left( b \right)} \right) = b$$
B $${f^{ - 1}}\left( {f\left( a \right)} \right) = a$$
C $$f\left( {{f^{ - 1}}\left( b \right)} \right) = b,b \subset y$$
D $${f^{ - 1}}\left( {f\left( a \right)} \right) = a,a \subset x$$
Answer :   $${f^{ - 1}}\left( {f\left( a \right)} \right) = a,a \subset x$$
Discuss Question


Practice More MCQ Question on Maths Section