We have $$f\left( x \right) = \frac{{{x^2} + x + 2}}{{{x^2} + x + 1}} = \frac{{\left( {{x^2} + x + 1} \right) + 1}}{{{x^2} + x + 1}}$$
$$ = 1 + \frac{1}{{{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{3}{4}}}$$
We can see here that as $$x \to \infty ,f\left( x \right) \to 1$$ which is the min value of $$f\left( x \right)\,{\text{.i}}{\text{.e}}{\text{.}}\,{f_{\min }} = 1.$$ Also $$f\left( x \right)$$ is max when $${\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4}$$ is min which is so when $$x = - \frac{1}{2}$$
$$\eqalign{
& {\text{i}}{\text{.e when}}\,{\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} = \frac{3}{4} \cr
& \therefore {f_{\max }} = 1 + \frac{3}{4} = \frac{7}{3} \cr
& \therefore {R_f} = \left( {1,\frac{7}{3}} \right] \cr} $$
132.
Find the range of $$f\left( x \right) = \operatorname{sgn} \left( {{x^2} - 2x + 3} \right)$$
134.
Let $$f\left( x \right) = a{x^2} + bx + c,$$ where $$a,\,b,\,c$$ are rational, and $$f:Z \to Z,$$ where $$Z$$ is the set of integers. Then $$a+b$$ is :
$$f:Z \to Z$$ is defined as $$f\left( x \right) = a{x^2} + bx + c$$
which implies for integer inputs, the function gives integer outputs.
$$ \Rightarrow f\left( 0 \right) = c = {Z_1}......\left( 1 \right)$$ (where $${Z_1}$$ is some integer)
Similarly, $$f\left( 1 \right) = a + b + c = {Z_2}......\left( 2 \right)$$ (where $${Z_2}$$ is some integer)
Equation $$\left( 2 \right) - \left( 1 \right)$$ gives $$a + b = {Z_2} - {Z_1},$$ which is also an integer.
135.
Let $$f\left( x \right) = \sin x$$ and $$g\left( x \right) = \ln \left| x \right|.$$ If the ranges of the composition functions $$fog$$ and $$gof$$ are $${R_1}$$ and $${R_2}$$ respectively, then
A
$${R_1} = \left\{ {u: - 1 \leqslant u < 1} \right\},{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
B
$${R_1} = \left\{ {u: - \infty < u < 0} \right\},{R_2} = \left\{ {v: - 1 \leqslant v \leqslant 0} \right\}$$
C
$${R_1} = \left\{ {u: - 1 < u < 1} \right\},{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
D
$${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$
Given functions are : $$f\left( x \right) = x$$ and $$g\left( x \right) = \left| x \right|$$
$$\therefore \,\left( {f + g} \right)\left( x \right) = f\left( x \right) + g\left( x \right) = x + \left| x \right|$$
According to definition of modulus function, \[\left( {f + g} \right)\left( x \right) = \left\{ \begin{array}{l}
x + x,\,\,\,x \ge 0\\
x - x,\,\,\,x < 0
\end{array} \right. = \left\{ \begin{array}{l}
2x,\,\,{\rm}x \ge 0\\
\,0,\,\,\,\,{\rm}x < 0
\end{array} \right.\]
138.
If the fractional part of the number $$\frac{{{2^{403}}}}{{15}}$$ is $$\frac{k}{{15}},$$ then $$k$$ is equal to:
$$f\left( x \right) = \left| {x - 1} \right| = \left\{ {_{x - 1,}^{ - x + 1}} \right.\,_{x \geqslant 1}^{x < 1}$$
Consider $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
If it is true it should be $$\forall x$$
$$\therefore $$ Put $$x = 2$$
$${\text{LHS}} = f\left( {{2^2}} \right) = \left| {4 - 1} \right| = 3\,{\text{and}}\,{\text{RHS}} = {\left( {f\left( 2 \right)} \right)^2} = 1$$
$$\therefore \left( A \right)$$ is not correct
Consider $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
Put $$x = 2,y = 5$$ we get $$f\left( 7 \right) = 6;f\left( 2 \right) + f\left( 5 \right) = 1 + 4 = 5$$
$$\therefore \left( B \right)$$ is not correct
Consider $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
Put $$x = - 5$$ then $$f\left( {\left| { - 5} \right|} \right) = f\left( 5 \right) = 4$$
$$f\left( {\left| { - 5} \right|} \right) = \left| { - 5 - 1} \right| = 6$$
$$\therefore \left( C \right)$$ is not correct.
Hence (D) is the correct alternative.
140.
If the function $$f:\left[ {1,\infty } \right) \to \left[ {1,\infty } \right)$$ is defined by $$f\left( x \right) = {2^{x\left( {x - 1} \right)}},$$ then $${f^{ - 1}}\left( x \right)$$ is
A
$${\left( {\frac{1}{2}} \right)^{x\left( {x - 1} \right)}}$$