131. Range of the function $$f\left( x \right) = \frac{{{x^2} + x + 2}}{{{x^2} + x + 1}};x \in R$$       is

A $$\left( {1,\infty } \right)$$
B $$\left( {1,\frac{{11}}{7}} \right]$$
C $$\left( {1,\frac{7}{3}} \right]$$
D $$\left( {1,\frac{7}{5}} \right]$$
Answer :   $$\left( {1,\frac{7}{3}} \right]$$
Discuss Question

132. Find the range of $$f\left( x \right) = \operatorname{sgn} \left( {{x^2} - 2x + 3} \right)$$

A $$\left\{ {1,\, - 1} \right\}$$
B $$\left\{ 1 \right\}$$
C $$\left\{ { - 1} \right\}$$
D none of these
Answer :   $$\left\{ 1 \right\}$$
Discuss Question

133. The function $$f\left( x \right) = \log \left( {x + \sqrt {{x^2} + 1} } \right),$$      is :

A neither an even nor an odd function
B an even function
C an odd function
D a periodic function
Answer :   an odd function
Discuss Question

134. Let $$f\left( x \right) = a{x^2} + bx + c,$$     where $$a,\,b,\,c$$   are rational, and $$f:Z \to Z,$$   where $$Z$$ is the set of integers. Then $$a+b$$  is :

A a negative integer
B an integer
C non-integral rational number
D none of these
Answer :   an integer
Discuss Question

135. Let $$f\left( x \right) = \sin x$$   and $$g\left( x \right) = \ln \left| x \right|.$$    If the ranges of the composition functions $$fog$$  and $$gof$$  are $${R_1}$$ and $${R_2}$$ respectively, then

A $${R_1} = \left\{ {u: - 1 \leqslant u < 1} \right\},{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
B $${R_1} = \left\{ {u: - \infty < u < 0} \right\},{R_2} = \left\{ {v: - 1 \leqslant v \leqslant 0} \right\}$$
C $${R_1} = \left\{ {u: - 1 < u < 1} \right\},{R_2} = \left\{ {v: - \infty < v < 0} \right\}$$
D $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$
Answer :   $${R_1} = \left\{ {u: - 1 \leqslant u \leqslant 1} \right\},{R_2} = \left\{ {v: - \infty < v \leqslant 0} \right\}$$
Discuss Question

136. The range of the function $$y = {\log _3}\left( {5 + 4x - {x^2}} \right)$$     is :

A $$\left( {0,\,2} \right]$$
B $$\left( { - \infty ,\,2} \right]$$
C $$\left( {0,\,9} \right]$$
D none of these
Answer :   $$\left( { - \infty ,\,2} \right]$$
Discuss Question

137. If $$f\left( x \right) = x$$   and $$g\left( x \right) = \left| x \right|,$$   then $$\left( {f + g} \right)\left( x \right)$$   is equal to :

A $$0$$ for all $$x\, \in \,R$$
B $$2x$$  for all $$x\, \in \,R$$
C \[\left\{ \begin{array}{l} 2x,\,\,{\rm{for\,\, }}x \ge 0\\ \,0,\,\,\,\,{\rm{for\,\, }}x < 0 \end{array} \right.\]
D \[\left\{ \begin{array}{l} \,\,0,\,\,\,\,\,{\rm{for\,\, }}x \ge 0\\ \,2x,\,\,\,\,{\rm{for\,\, }}x < 0 \end{array} \right.\]
Answer :   \[\left\{ \begin{array}{l} 2x,\,\,{\rm{for\,\, }}x \ge 0\\ \,0,\,\,\,\,{\rm{for\,\, }}x < 0 \end{array} \right.\]
Discuss Question

138. If the fractional part of the number $$\frac{{{2^{403}}}}{{15}}$$  is $$\frac{k}{{15}},$$  then $$k$$ is equal to:

A 6
B 8
C 4
D 14
Answer :   8
Discuss Question

139. Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D None of these
Answer :   None of these
Discuss Question

140. If the function $$f:\left[ {1,\infty } \right) \to \left[ {1,\infty } \right)$$    is defined by $$f\left( x \right) = {2^{x\left( {x - 1} \right)}},$$    then $${f^{ - 1}}\left( x \right)$$  is

A $${\left( {\frac{1}{2}} \right)^{x\left( {x - 1} \right)}}$$
B $$\frac{1}{2}\left( {1 + \sqrt {1 + 4{{\log }_2}x} } \right)$$
C $$\frac{1}{2}\left( {1 - \sqrt {1 + 4{{\log }_2}x} } \right)$$
D not defined
Answer :   $$\frac{1}{2}\left( {1 + \sqrt {1 + 4{{\log }_2}x} } \right)$$
Discuss Question


Practice More MCQ Question on Maths Section