21. The domain of $$f\left( x \right) = {\sin ^{ - 1}}\left( {\frac{{1 + {x^2}}}{{2x}}} \right) + \sqrt {1 - {x^2}} \,$$       is :

A $$\left\{ 1 \right\}$$
B $$\left( { - 1,\,1} \right)$$
C $$\left\{ {1,\, - 1} \right\}$$
D none of these
Answer :   $$\left\{ {1,\, - 1} \right\}$$
Discuss Question

22. Let $$f$$ be a function from $$R$$ to $$R$$ given by $$f\left( x \right) = \frac{{{x^2} - 4}}{{{x^2} + 1}}.$$    Then $$f\left( x \right)$$  is :

A one-one and into
B one-one and onto
C many-one and into
D many-one and onto
Answer :   many-one and into
Discuss Question

23. Let
\[\begin{array}{l} {f_1}\left( x \right) = \left\{ \begin{array}{l} x,\,\,\,0 \le x \le 1\\ 1,\,\,\,x > 1\\ 0,\,\,\,{\rm{otherwise}} \end{array} \right.\\ {f_2}\left( x \right) = {f_1}\left( { - x} \right){\rm{ for\,\,all\,\, }}x\\ {f_3}\left( x \right) = - {f_2}\left( x \right){\rm{ for\,\,all\,\, }}x\\ {f_4}\left( x \right) = {f_3}\left( { - x} \right){\rm{ for\,\, all\,\, }}x \end{array}\]
Which of the following is necessarily true ?

A $${f_4}\left( x \right) = {f_1}\left( x \right){\text{ for all }}x$$
B $${f_1}\left( x \right) = - {f_3}\left( { - x} \right){\text{ for all }}x$$
C $${f_2}\left( { - x} \right) = {f_4}\left( x \right){\text{ for all }}x$$
D $${f_1}\left( x \right) + {f_3}\left( x \right) = 0{\text{ for all }}x$$
Answer :   $${f_1}\left( x \right) = - {f_3}\left( { - x} \right){\text{ for all }}x$$
Discuss Question

24. The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A $$k < 7$$
B $$ - 5 < k < 7$$
C $$k > - 5$$
D None of these.
Answer :   $$ - 5 < k < 7$$
Discuss Question

25. If $$F\left( x \right) = {\left( {f\left( {\frac{x}{2}} \right)} \right)^2} + {\left( {g\left( {\frac{x}{2}} \right)} \right)^2}$$     where $$f''\left( x \right) = - f\left( x \right)$$   and $$g\left( x \right) = f'\left( x \right)$$   and given that $$F\left( 5 \right) = 5,$$   then $$F\left( {10} \right)$$  is equal to

A 5
B 10
C 0
D 15
Answer :   5
Discuss Question

26. Let $$f\left( x \right)$$  be a function whose domain is $$\left[ { - 5,\,7} \right].$$   Let $$g\left( x \right) = \left| {2x + 5} \right|.$$    Then the domain of $$\left( {f\,o\,g} \right)\left( x \right)$$   is :

A $$\left[ { - 5,\,1} \right]$$
B $$\left[ { - 4,\,0} \right]$$
C $$\left[ { - 6,\,1} \right]$$
D none of these
Answer :   $$\left[ { - 6,\,1} \right]$$
Discuss Question

27. If $$f\left( {x + y,\,x - y} \right) = xy$$     then the arithmetic mean of $$f\left( {x,\,y} \right)$$  and $$f\left( {y,\,x} \right)$$  is :

A $$x$$
B $$y$$
C 0
D none of these
Answer :   0
Discuss Question

28. If the real-valued function $$f\left( x \right) = px + \sin \,x$$    is a bijective function then the set of possible values of $$p\, \in \,R$$  is :

A $$R - \left\{ 0 \right\}$$
B $$R$$
C $$\left( {0,\, + \infty } \right)$$
D none of these
Answer :   $$R - \left\{ 0 \right\}$$
Discuss Question

29. A function is matched below against an interval where it is supposed to be increasing. Which of the following pairs is incorrectly matched?
Interval Function
(a) $$\left( { - \infty ,\,\infty } \right)$$ $${x^3} - 3{x^2} + 3x + 3$$
(b) $$\left[ {2,\,\infty } \right)$$ $$2{x^3} - 3{x^2} - 12x + 6$$
(c) $$\left( { - \infty ,\,\frac{1}{3}} \right]$$ $$3{x^2} - 2x + 1$$
(d) $$\left( { - \infty ,\, - 4} \right)$$ $${x^3} + 6{x^2} + 6$$

A a
B b
C c
D d
Answer :   c
Discuss Question

30. Let $$f\left( x \right) = {\log _{{x^2}}}25$$    and $$g\left( x \right) = {\log _x}5$$    then $$f\left( x \right) = g\left( x \right)$$   holds for $$x$$ belonging to :

A $$R$$
B $$\left( {0,\,1} \right) \cup \left( {1,\, + \infty } \right)$$
C $$\phi $$
D none of these
Answer :   $$\left( {0,\,1} \right) \cup \left( {1,\, + \infty } \right)$$
Discuss Question


Practice More MCQ Question on Maths Section