31.
If the function $$f:R - \left\{ {1, - 1} \right\}$$ A defined by $$f\left( x \right) = \frac{{{x^2}}}{{1 - {x^2}}},$$ is surjective, then $$A$$ is equal to:
$$\eqalign{
& f\left( x \right) = \frac{{{x^2}}}{{1 - {x^2}}} \Rightarrow f\left( { - x} \right) = \frac{{{x^2}}}{{1 - {x^2}}} = f\left( x \right) \cr
& f'\left( { - x} \right) = \frac{{2x}}{{{{\left( {1 - {x^2}} \right)}^2}}} \cr
& \mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = - 1 \cr
& \therefore f\left( x \right)\,{\text{increases}}\,{\text{in}}\,x \in \left( {10,\infty } \right) \cr
& {\text{Also}}\,f\left( 0 \right) = 0\,{\text{and}} \cr
& {\text{and}}\,f\left( x \right)\,{\text{is}}\,{\text{even}}\,{\text{function}} \cr
& \therefore {\text{Set}}\,A = R - \left[ { - 1,0} \right) \cr} $$
And the graph of function $$f\left( x \right)$$ is Alternative
For $$f$$ to be subjective $$A =$$ Range of $$f.$$
$$\eqalign{
& \frac{{{x^2}}}{{1 - {x^2}}} = y \Rightarrow {x^2} = y - {x^2}y \cr
& \Rightarrow x = \pm \sqrt {\frac{y}{{1 + y}}} \Rightarrow y\left( {1 + y} \right) \geqslant 0{\text{ and }}y \ne - 1 \cr
& \Rightarrow y \in \left( { - \infty , - 1} \right)U\left[ {0,\infty } \right) \Rightarrow y \in R - \left[ { - 1,0} \right) \cr
& \Rightarrow A = R - \left[ { - 1,0} \right) \cr} $$
32.
Let $$f\left( 1 \right) = 1$$ and $$f\left( n \right) = 2\sum\limits_{r = 1}^{n - 1} {f\left( r \right).} $$ Then $$\sum\limits_{n = 1}^m {f\left( n \right)} $$ is equal to :
33.
Let $$f\left( x \right) = nx + n - \left[ {nx + n} \right] + \tan \frac{{\pi x}}{2},$$
where $$\left[ x \right]$$ is the greatest integer $$ \leqslant x$$ and $$n\, \in \,N.$$ It is :
$$nx + n - \left[ {nx + n} \right]$$ has the period 1 and $$\tan \frac{{\pi x}}{2}$$ has the period $$\frac{\pi }{{\frac{\pi }{2}}}$$ i.e., 2.
LCM of 1, 2 is 2.
34.
A function whose graph is symmetrical about the y-axis is given by :
A
$$f\left( x \right) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \right)$$
B
$$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right){\text{ for all }}x,\,y\, \in \,R$$
36.
Let $$f:R \to A = \left\{ {y\,|\,0 \leqslant y < \frac{\pi }{2}} \right\}$$ be a function such that $$f\left( x \right) = {\tan ^{ - 1}}\left( {{x^2} + x + k} \right),$$ where $$k$$ is a constant. The value of $$k$$ for which $$f$$ is an onto function, is :
39.
If $$g\left\{ {f\left( x \right)} \right\} = \left| {\sin \,x} \right|$$ and $$f\left\{ {g\left( x \right)} \right\} = {\left( {\sin \,\sqrt x } \right)^2}$$ then :
A
$$f\left( x \right) = {\sin ^2}x,\,g\left( x \right) = \sqrt x $$
B
$$f\left( x \right) = \sin \,x,\,g\left( x \right) = \left| x \right|$$
C
$$f\left( x \right) = {x^2},\,g\left( x \right) = \sin \,\sqrt x $$
D
$$f$$ and $$g$$ cannot be determined
Answer :
$$f\left( x \right) = {\sin ^2}x,\,g\left( x \right) = \sqrt x $$