Let us consider a graph symmetric with respect to line $$x = 2$$ as shown in the figure.
$$\eqalign{
& {\text{From the figure :}} \cr
& f\left( {{x_1}} \right) = f\left( {{x_2}} \right),{\text{ where }}{x_1} = 2 - x{\text{ and }}{x_2} = 2 + x \cr
& \therefore \,f\left( {2 - x} \right) = f\left( {2 + x} \right) \cr} $$
13.
If $$f\left( x \right) = \cos \,\left[ \pi \right]x + \cos \,\left[ {\pi x} \right],$$ where $$\left[ y \right]$$ is the greatest integer function of $$y$$ then $$f\left( {\frac{\pi }{2}} \right)$$ is equal to :
14.
Let $$f\left( x \right) = \left[ x \right] = $$ the greatest integer less than or equal to $$x$$ and $$g\left( x \right) = x - \left[ x \right].$$ Then for any two real numbers $$x$$ and $$y$$
A
$$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
B
$$g\left( {x + y} \right) = g\left( x \right) + g\left( y \right)$$
C
$$f\left( {x + y} \right) = f\left( x \right) + f\left\{ {y + g\left( x \right)} \right\}$$
D
none of these
Answer :
$$f\left( {x + y} \right) = f\left( x \right) + f\left\{ {y + g\left( x \right)} \right\}$$
16.
If $$f\left( x \right) = {x^2} + 2bx + 2{c^2}$$ and $$g\left( x \right) = - {x^2} - 2cx + {b^2}$$ such that min $$\min \,f\left( x \right) > \max \,g\left( x \right),$$ then the relation between $$b$$ and $$c,$$ is
A
no real value of $$b$$ & $$c$$
B
$$0 < c < b\sqrt 2 $$
C
$$\left| c \right| < \left| b \right|\sqrt 2 $$
D
$$\left| c \right| > \left| b \right|\sqrt 2 $$
Answer :
$$\left| c \right| > \left| b \right|\sqrt 2 $$
17.
A real valued function $$f\left( x \right)$$ satisfies the functional equation $$f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)$$ where $$a$$ is a given constant and $$f\left( 0 \right) = 1,\,f\left( {2a - x} \right)$$ is equal to :
18.
The domain of the function $$f\left( x \right) = \sqrt {{x^2} - {{\left[ x \right]}^2}} ,$$ where $$\left[ x \right] = $$ the greatest integer less than or equal to $$x,$$ is :
$${x^2} - {\left[ x \right]^2} \geqslant 0\,\, \Rightarrow {x^2} \geqslant {\left[ x \right]^2}$$
This is true for all positive $$x$$ and all negative integer $$x.$$
19.
The domain of the function $$f\left( x \right) = \frac{{\left| {x + 3} \right|}}{{x + 3}}$$ is :
Here, $$f\left( x \right)$$ is defined only when $$x + 3 \ne 0,$$ i.e., when $$x \ne - 3$$
$$\therefore \,\,D\left( f \right) = R - \left\{ { - 3} \right\}$$
20.
The domain of the function $$\sqrt {{x^2} - 5x + 6} + \sqrt {2x + 8 - {x^2}} $$ is :
A
$$\left[ {2,\,3} \right]$$
B
$$\left[ { - 2,\,4} \right]$$
C
$$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right]$$
D
$$\left[ { - 2,\,1} \right] \cup \left[ {2,\,4} \right]$$
$$f\left( x \right) = \sqrt {\left( {x - 2} \right)\left( {x - 3} \right)} + \sqrt { - \left( {x - 4} \right)\left( {x + 2} \right)} $$
The first part is real outside $$\left( {2,\,3} \right)$$ and the second is real in $$\left[ { - 2,\,4} \right]$$ so that the domain is $$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right].$$