11. The domain of $${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$$    is

A [1, 9]
B [-1, 9]
C [- 9,1]
D [-9,-1]
Answer :   [1, 9]
Discuss Question

12. The graph of the function $$y = f\left( x \right)$$   is symmetrical about the line $$x = 2$$  then :

A $$f\left( x \right) = - f\left( { - x} \right)$$
B $$f\left( {2 + x} \right) = f\left( {2 - x} \right)$$
C $$f\left( x \right) = f\left( { - x} \right)$$
D $$f\left( {x + 2} \right) = f\left( {x - 2} \right)$$
Answer :   $$f\left( {2 + x} \right) = f\left( {2 - x} \right)$$
Discuss Question

13. If $$f\left( x \right) = \cos \,\left[ \pi \right]x + \cos \,\left[ {\pi x} \right],$$      where $$\left[ y \right]$$ is the greatest integer function of $$y$$ then $$f\left( {\frac{\pi }{2}} \right)$$  is equal to :

A $$\cos \,3$$
B 0
C $$\cos \,4$$
D none of these
Answer :   $$\cos \,4$$
Discuss Question

14. Let $$f\left( x \right) = \left[ x \right] = $$   the greatest integer less than or equal to $$x$$ and $$g\left( x \right) = x - \left[ x \right].$$   Then for any two real numbers $$x$$ and $$y$$

A $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
B $$g\left( {x + y} \right) = g\left( x \right) + g\left( y \right)$$
C $$f\left( {x + y} \right) = f\left( x \right) + f\left\{ {y + g\left( x \right)} \right\}$$
D none of these
Answer :   $$f\left( {x + y} \right) = f\left( x \right) + f\left\{ {y + g\left( x \right)} \right\}$$
Discuss Question

15. The domain of the function
Function mcq question image
is :

A $$\left[ {{{10}^n},\, + \infty } \right)$$
B $$\left( {{{10}^{n - 1}},\, + \infty } \right)$$
C $$\left( {{{10}^{n - 2}},\, + \infty } \right)$$
D none of these
Answer :   none of these
Discuss Question

16. If $$f\left( x \right) = {x^2} + 2bx + 2{c^2}$$     and $$g\left( x \right) = - {x^2} - 2cx + {b^2}$$     such that min $$\min \,f\left( x \right) > \max \,g\left( x \right),$$     then the relation between $$b$$ and $$c,$$ is

A no real value of $$b$$ & $$c$$
B $$0 < c < b\sqrt 2 $$
C $$\left| c \right| < \left| b \right|\sqrt 2 $$
D $$\left| c \right| > \left| b \right|\sqrt 2 $$
Answer :   $$\left| c \right| > \left| b \right|\sqrt 2 $$
Discuss Question

17. A real valued function $$f\left( x \right)$$  satisfies the functional equation $$f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)$$         where $$a$$ is a given constant and $$f\left( 0 \right) = 1,\,f\left( {2a - x} \right)$$    is equal to :

A $$ - f\left( x \right)$$
B $$f\left( x \right)$$
C $$f\left( a \right) + f\left( {a - x} \right)$$
D $$f\left( { - x} \right)$$
Answer :   $$ - f\left( x \right)$$
Discuss Question

18. The domain of the function $$f\left( x \right) = \sqrt {{x^2} - {{\left[ x \right]}^2}} ,$$    where $$\left[ x \right] = $$  the greatest integer less than or equal to $$x,$$  is :

A $$R$$
B $$\left[ {0,\, + \infty } \right)$$
C $$\left( { - \infty ,\,0} \right]$$
D none of these
Answer :   none of these
Discuss Question

19. The domain of the function $$f\left( x \right) = \frac{{\left| {x + 3} \right|}}{{x + 3}}$$    is :

A $$\left\{ { - 3} \right\}$$
B $$R - \left\{ { - 3} \right\}$$
C $$R - \left\{ 3 \right\}$$
D $$R$$
Answer :   $$R - \left\{ { - 3} \right\}$$
Discuss Question

20. The domain of the function $$\sqrt {{x^2} - 5x + 6} + \sqrt {2x + 8 - {x^2}} $$       is :

A $$\left[ {2,\,3} \right]$$
B $$\left[ { - 2,\,4} \right]$$
C $$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right]$$
D $$\left[ { - 2,\,1} \right] \cup \left[ {2,\,4} \right]$$
Answer :   $$\left[ { - 2,\,2} \right] \cup \left[ {3,\,4} \right]$$
Discuss Question


Practice More MCQ Question on Maths Section