201. Let $$f\left( x \right) = 2\,{\sin ^3}x - 3\,{\sin ^2}x + 12\,\sin \,x + 5,\,0 \leqslant x \leqslant \frac{\pi }{2}.$$           Then $$f\left( x \right)$$  is :

A decreasing in $$\left[ {0,\,\frac{\pi }{2}} \right]$$
B increasing in $$\left[ {0,\,\frac{\pi }{2}} \right]$$
C increasing in $$\left[ {0,\,\frac{\pi }{4}} \right]$$   decreasing in $$\left[ {\frac{\pi }{4},\,\frac{\pi }{2}} \right]$$
D none of these
Answer :   increasing in $$\left[ {0,\,\frac{\pi }{2}} \right]$$
Discuss Question

202. What is the area of the largest rectangular field which can be enclosed with $$200\,m$$  of fencing ?

A $$1600\,{m^2}$$
B $$2100\,{m^2}$$
C $$2400\,{m^2}$$
D $$2500\,{m^2}$$
Answer :   $$2500\,{m^2}$$
Discuss Question

203. The total number of parallel tangents of $${f_1}\left( x \right) = {x^2} - x + 1$$     and $${f_2}\left( x \right) = {x^3} - {x^2} - 2x + 1$$      is :

A 2
B 0
C 1
D infinite
Answer :   infinite
Discuss Question

204. If the line joining the points $$\left( {0,\,3} \right)$$  and $$\left( {5,\, - 2} \right)$$  is a tangent to the curve $$y = \frac{c}{{x + 1}},$$   then the value of $$c$$ is

A $$1$$
B $$ - 2$$
C $$4$$
D none of these
Answer :   $$4$$
Discuss Question

205. If $$f\left( x \right) = \int_0^x {\left( {{t^2} + 2t + 2} \right)dt,\,2 \leqslant x \leqslant 4,} $$        then :

A the maximum value of $$f\left( x \right)$$  is $$\frac{{136}}{3}$$
B the minimum value of $$f\left( x \right)$$  is 10
C the maximum value of $$f\left( x \right)$$  is 26
D none of these
Answer :   the maximum value of $$f\left( x \right)$$  is $$\frac{{136}}{3}$$
Discuss Question

206. The function $$f\left( x \right) = \frac{x}{{1 + x\tan \,x}}$$    has :

A one point of minimum in the interval $$\left( {0,\,\frac{\pi }{2}} \right)$$
B one point of maximum in the interval $$\left( {0,\,\frac{\pi }{2}} \right)$$
C no point of maximum, no point of minimum in the interval $$\left( {0,\,\frac{\pi }{2}} \right)$$
D two points of maxima in the interval $$\left( {0,\,\frac{\pi }{2}} \right)$$
Answer :   one point of maximum in the interval $$\left( {0,\,\frac{\pi }{2}} \right)$$
Discuss Question

207. A stone thrown vertically upward satisfies the equation $$s = 64t - 16{t^2},$$    where $$s$$ is in meter and $$t$$ is in second. What is the time required to reach the maximum height?

A $$1\,s$$
B $$2\,s$$
C $$3\,s$$
D $$4\,s$$
Answer :   $$2\,s$$
Discuss Question

208. The sum of two nonzero numbers is 8. The minimum value of the sum of their reciprocals is :

A $$\frac{1}{4}$$
B $$\frac{1}{2}$$
C $$\frac{1}{8}$$
D none of these
Answer :   $$\frac{1}{2}$$
Discuss Question

209. If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A at least one root in $$\left[ {0, 1} \right]$$
B one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C imaginary roots
D none of these
Answer :   at least one root in $$\left[ {0, 1} \right]$$
Discuss Question

210. The function $$f:\left[ {0,\,3} \right] \to \left[ {1,\,29} \right],$$     defined by $$f\left( x \right) = 2{x^3} - 15{x^2} + 36x + 1,$$       is :

A one-one and onto
B onto but not one-one
C one-one but not onto
D neither one-one nor onto
Answer :   onto but not one-one
Discuss Question


Practice More MCQ Question on Maths Section