211. If a circular plate is heated uniformly, its area expands $$3c$$  times as fast as its radius, then the value of $$c$$ when the radius is $$6$$ units, is :

A $$4\pi $$
B $$2\pi $$
C $$6\pi $$
D $$3\pi $$
Answer :   $$4\pi $$
Discuss Question

212. A point on the hypotenuse of a triangle is at distance $$a$$ and $$b$$ from the sides of the triangle. Then the minimum length of the hypotenuse is :

A $${\left( {{a^{\frac{3}{2}}} + {b^{\frac{3}{2}}}} \right)^{\frac{2}{3}}}$$
B $${\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^{\frac{3}{2}}}$$
C $${\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^3}$$
D $${\left( {{a^{\frac{3}{2}}} + {b^{\frac{3}{2}}}} \right)^3}$$
Answer :   $${\left( {{a^{\frac{2}{3}}} + {b^{\frac{2}{3}}}} \right)^{\frac{3}{2}}}$$
Discuss Question

213. The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 5 hours then in 25 hours, its number would be :

A 8 times the original
B 16 times the original
C 32 times the original
D 64 times the original
Answer :   32 times the original
Discuss Question

214. If the curve $$y = a{x^2} - 6x + b$$    passes through $$\left( {0,\,2} \right)$$  and has its tangent parallel to the $$x$$-axis at $$x = \frac{3}{2},$$  then :

A $$a = b = 0$$
B $$a = b = 1$$
C $$a = b = 2$$
D $$a = b = – 1$$
Answer :   $$a = b = 2$$
Discuss Question

215. The function $$f\left( x \right) = \frac{{{x^2}}}{{{e^x}}}$$   monotonically increasing if :

A $$x < 0{\text{ only}}$$
B $$x > 2{\text{ only}}$$
C $$0 < x < 2$$
D $$x\, \in \left( { - \infty ,\,0} \right) \cup \left( {2,\,\infty } \right)$$
Answer :   $$0 < x < 2$$
Discuss Question

216. Let $$f:R \to R$$   be defined by $$f\left( x \right) = \left\{ {_{2x + 3,\,\,{\text{if}}\,x > - 1}^{k - 2x,\,\,{\text{if}}\,x\, \leqslant - 1}} \right.$$
If $$f$$ has a local minimum at $$x = - 1$$ , then a possible value of $$k$$ is

A 0
B $$ - \frac{1}{2}$$
C -1
D 1
Answer :   -1
Discuss Question

217. The maximum distance from origin of a point on the curve
$$x = a\sin t - b\left( {\frac{{at}}{b}} \right)$$
$$y = a\cos t - b\cos \left( {\frac{{at}}{b}} \right),$$     both $$a,b > 0$$  is

A $$a - b$$
B $$a + b$$
C $$\sqrt {{a^2} + {b^2}} $$
D $$\sqrt {{a^2} - {b^2}} $$
Answer :   $$a + b$$
Discuss Question

218. Given $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$       such that $$x = 0$$  is the only real root of $$P'\left( x \right) = 0.$$   If $$P\left( { - 1} \right) < {\text{ }}P\left( 1 \right),$$   then in the interval [1, -1]:

A $$P\left( { - 1} \right)$$  is not minimum but $$P\left( { 1} \right)$$  is the maximum of $$P$$
B $$P\left( { - 1} \right)$$  is the minimum but $$P\left( { 1} \right)$$  is not the maximum of $$P$$
C Neither $$P\left( { - 1} \right)$$  is the minimum nor $$P\left( { 1} \right)$$  is the maximum of $$P$$
D $$P\left( { - 1} \right)$$  is the minimum and $$P\left( { 1} \right)$$  is the maximum of $$P$$
Answer :   $$P\left( { - 1} \right)$$  is not minimum but $$P\left( { 1} \right)$$  is the maximum of $$P$$
Discuss Question

219. Find the greatest value of the function $$f\left( x \right) = \frac{{\sin \,2x}}{{\sin \left( {x + \frac{\pi }{4}} \right)}}$$       on the interval $$\left[ {0,\,\frac{\pi }{2}} \right]$$

A 1
B 2
C 3
D none of these
Answer :   1
Discuss Question

220. The equation of the normal to the curve $$y = \left| {{x^2} - \left| x \right|} \right|{\text{ at }}x = - 2.$$

A $$3y = x + 8$$
B $$x = 3y + 4$$
C $$y = 2x + 8$$
D $$y = 3x$$
Answer :   $$3y = x + 8$$
Discuss Question


Practice More MCQ Question on Maths Section