191. The slope of the tangent to a curve $$y = f\left( x \right)$$   at $$\left[ {x,f\left( x \right)} \right]$$   is $$2x + 1.$$   If the curve passes through the point (1, 2), then the area bounded by the curve, the $${x}$$ - axis and the line $$x = 1$$  is

A $$\frac{5}{6}$$
B $$\frac{6}{5}$$
C $$\frac{1}{6}$$
D 6
Answer :   $$\frac{5}{6}$$
Discuss Question

192. Area of the greatest rectangle that can be inscribed in the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$    is

A $$2ab$$
B $$ab$$
C $$\sqrt {ab} $$
D $$\frac{a}{b}$$
Answer :   $$2ab$$
Discuss Question

193. The function $$f\left( x \right) = \frac{{\ln \left( {\pi + x} \right)}}{{\ln \left( {e + x} \right)}}$$    is

A increasing on $$\left( {0,\infty } \right)$$
B decreasing on $$\left( {0,\infty } \right)$$
C increasing on $$\left( {0,\frac{\pi }{e}} \right),$$   decreasing on $$\left( {\frac{\pi }{e},\infty } \right)$$
D decreasing on $$\left( {0,\frac{\pi }{e}} \right),$$   increasing on $$\left( {\frac{\pi }{e},\infty } \right)$$
Answer :   decreasing on $$\left( {0,\infty } \right)$$
Discuss Question

194. If $$f\left( x \right) = \frac{{{p^2} - 1}}{{{p^2} + 1}}{x^3} - 3x + \log \,2$$       is a decreasing function of $$x$$ in $$R$$ then the set of possible values of $$p$$ ( independent of $$x$$ ) is :

A $$\left[ { - 1,\,1} \right]$$
B $$\left[ {1,\,\infty } \right)$$
C $$\left( { - \infty ,\, - 1} \right]$$
D none of these
Answer :   $$\left[ { - 1,\,1} \right]$$
Discuss Question

195. If $$\theta $$ is a positive acute angle then :

A $$\tan \,\theta < \theta < \sin \,\theta $$
B $$\theta < \sin \,\theta < \tan \,\theta $$
C $$\sin \,\theta < \tan \,\theta < \theta $$
D none of these
Answer :   none of these
Discuss Question

196. On the curve $${x^3} = 12y$$   the abscissa changes at a faster rate than the ordinate. Then $$x$$ belongs to the interval :

A $$\left( { - 2,\,2} \right)$$
B $$\left( { - 1,\,1} \right)$$
C $$\left( {0,\,2} \right)$$
D none of these
Answer :   $$\left( { - 2,\,2} \right)$$
Discuss Question

197. Area of the triangle formed by the normal to the curve $$x = {e^{\sin \,y}}$$   at $$\left( {1,\,0} \right)$$  with the coordinate axes is :

A $$\frac{1}{4}$$
B $$\frac{1}{2}$$
C $$\frac{3}{4}$$
D $$1$$
Answer :   $$\frac{1}{2}$$
Discuss Question

198. Let $$f'\left( x \right) < 0$$   and $$g'\left( x \right) > 0$$   for all real $$x,$$ then :

A $$f\left( {g\left( {x + 1} \right)} \right) > f\left( {g\left( {x + 5} \right)} \right)$$
B $$f\left( {g\left( x \right)} \right) < f\left( {g\left( {f\left( {x + 2} \right)} \right)} \right)$$
C $$g\left( {f\left( x \right)} \right) < g\left( {f\left( {x + 2} \right)} \right)$$
D $$g\left( {f\left( x \right)} \right) > g\left( {f\left( {x - 2} \right)} \right)$$
Answer :   $$f\left( {g\left( {x + 1} \right)} \right) > f\left( {g\left( {x + 5} \right)} \right)$$
Discuss Question

199. If $$2a + 3b + 6c = 0,\left( {a,b,c \in R} \right)$$      then the quadratic equation $$a{x^2} + bx + c = 0$$    has

A at least one root in [0, 1]
B at least one root in [2, 3]
C at least one root in [4, 5]
D none of these
Answer :   at least one root in [0, 1]
Discuss Question

200. Twenty metres of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in $$sq. m$$  ) of the flower-bed, is:

A 30
B 12.5
C 10
D 25
Answer :   25
Discuss Question


Practice More MCQ Question on Maths Section