131. If $$f$$ and $$g$$ are differentiable functions in [0, 1] satisfying $$f\left( 0 \right) = 2{\text{ }} = g\left( 1 \right),{\text{ }}g\left( 0 \right) = 0$$      and $$f\left( 1 \right) = 6,$$   then for some $$c \in \left] {0,1} \right[$$

A $$f'\left( c \right) = g'\left( c \right)$$
B $$f'\left( c \right) = 2g'\left( c \right)$$
C $$2f'\left( c \right) = g'\left( c \right)$$
D $$2f'\left( c \right) = 3g'\left( c \right)$$
Answer :   $$f'\left( c \right) = 2g'\left( c \right)$$
Discuss Question

132. Consider: $$f\left( x \right) = {\tan ^{ - 1}}\left( {\sqrt {\frac{{1 + \sin x}}{{1 - \sin x}}} } \right),\,x \in \left( {0,\frac{\pi }{2}} \right).$$
A normal to $$y = f\left( x \right)$$   at $$x = \frac{p}{6}$$  also passes through the point :

A $$\left( {\frac{\pi }{6},0} \right)$$
B $$\left( {\frac{\pi }{4},0} \right)$$
C (0, 0)
D $$\left( {0,\frac{{2\pi }}{3}} \right)$$
Answer :   $$\left( {0,\frac{{2\pi }}{3}} \right)$$
Discuss Question

133. The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A it makes a constant angle with the $$x - $$axis
B it passes through the origin
C it is at a constant distance from the origin
D none of these
Answer :   it is at a constant distance from the origin
Discuss Question

134. Find the minimum value of the function $$\frac{{40}}{{3{x^4} + 8{x^3} - 18{x^2} + 60}}$$

A $$\frac{1}{3}$$
B $$\frac{2}{3}$$
C $$\frac{4}{3}$$
D $$\frac{5}{3}$$
Answer :   $$\frac{2}{3}$$
Discuss Question

135. The equation of one of the tangents to the curve $$y = \cos \left( {x + y} \right),\, - 2\pi \leqslant x \leqslant 2\pi $$       that is parallel to the line $$x + 2y = 0,$$   is :

A $$x + 2y = 1$$
B $$x + 2y = \frac{\pi }{2}$$
C $$x + 2y = \frac{\pi }{4}$$
D none of these
Answer :   $$x + 2y = \frac{\pi }{2}$$
Discuss Question

136. The range of the function $$f\left( x \right) = \left| {2x + 1} \right| - 2\left| {x - 1} \right|,\,x\, \in \,R,$$        is :

A $$\left[ { - 3,\,3} \right]$$
B $$\left[ {0,\,6} \right]$$
C $$R$$
D none of these
Answer :   $$\left[ { - 3,\,3} \right]$$
Discuss Question

137. Let $$g\left( x \right) = 2f\left( {\frac{x}{2}} \right) + f\left( {2 - x} \right)$$      and $$f''\left( x \right) < 0\,\forall \,x\, \in \left( {0,\,2} \right).$$     Then $$g\left( x \right)$$  increases in :

A $$\left( {\frac{1}{2},\,2} \right)$$
B $$\left( {\frac{4}{3},\,2} \right)$$
C $$\left( {0,\,2} \right)$$
D $$\left( {0,\,\frac{4}{3}} \right)$$
Answer :   $$\left( {0,\,\frac{4}{3}} \right)$$
Discuss Question

138. Let $$f:\left[ {a,\,b} \right] \to R$$   be a function such that for $$c\, \in \left( {a,\,b} \right),\,f'\left( c \right) = f''\left( c \right) = f'''\left( c \right) = {f^{iv}}\left( c \right) = {f^v}\left( c \right) = 0.$$
Then :

A $$f$$ has a local extremum at $$x = c$$
B $$f$$ has neither local maximum nor minimum at $$x = c$$
C $$f$$ is necessarily a constant function
D it is difficult to say whether (A) or (B)
Answer :   it is difficult to say whether (A) or (B)
Discuss Question

139. A triangular park is enclosed on two sides by a fence and on the third side by a straight river bank. The two sides having fence are of same length $$x.$$ The maximum area enclosed by the park is

A $$\frac{3}{2}{x^2}$$
B $$\sqrt {\frac{{{x^3}}}{8}} $$
C $$\frac{1}{2}{x^2}$$
D $$\pi {x^2}$$
Answer :   $$\frac{1}{2}{x^2}$$
Discuss Question

140. Let $$f\left( x \right)$$  be a function such that $$f'\left( a \right) \ne 0.$$   Then at $$x = a,\,f\left( x \right)$$

A cannot have a maximum
B cannot have a minimum
C must have neither a maximum nor a minimum
D none of these
Answer :   none of these
Discuss Question


Practice More MCQ Question on Maths Section