91. If $${x^2} + px + 1$$   is a factor of the expression $$a{x^3} + bx + c$$    then

A $${a^2} + {c^2} = - ab$$
B $${a^2} - {c^2} = - ab$$
C $${a^2} - {c^2} = ab$$
D None of these
Answer :   $${a^2} - {c^2} = ab$$
Discuss Question

92. If $$\alpha ,\beta $$  be the roots of $$4{x^2} - 16x + \lambda = 0,\lambda \in R$$      such that $$1 < \alpha < 2$$   and $$2 < \beta < 3$$   then the number of integral solutions of $$\lambda $$ is

A 5
B 6
C 2
D 3
Answer :   3
Discuss Question

93. If $$\alpha $$ and $$\beta \left( {\alpha < \beta } \right)$$   are the roots of the equation $$x^2 + bx + c = 0 ,$$    where, $$c < 0 < b,$$   then

A $$0 < \alpha < \beta $$
B $$\alpha < 0 < \beta < \left| \alpha \right|$$
C $$\alpha < \beta < 0$$
D $$\alpha < 0 < \left| \alpha \right| < \beta$$
Answer :   $$\alpha < 0 < \beta < \left| \alpha \right|$$
Discuss Question

94. If $${a_1},{a_2},.....,{a_n}$$   are positive real numbers whose product is a fixed number $$c,$$ then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}\,\,{\text{is}}$$

A $$n{\left( {2c} \right)^{\frac{1}{n}}}$$
B $$\left( {n + 1} \right){c^{\frac{1}{n}}}$$
C $$2n{c^{\frac{1}{n}}}$$
D $$\left( {n + 1} \right){\left( {2c} \right)^{\frac{1}{n}}}$$
Answer :   $$n{\left( {2c} \right)^{\frac{1}{n}}}$$
Discuss Question

95. If $$x, y, z$$  are real and distinct then $$f\left( {x,y} \right) = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - 2xy$$         is always

A non-negative
B non-positive
C zero
D None of these
Answer :   non-negative
Discuss Question

96. If $$m$$ and $$n$$ are the roots of the equation $$\left( {x + p} \right)\left( {x + q} \right) - k = 0,$$     then the roots of the equation $$\left( {x - m} \right)\left( {x - n} \right) + k = 0,$$     are

A $$p$$ and $$q$$
B $$\frac{1}{p}{\text{and}}\frac{1}{q}$$
C $$- p$$ and $$- q$$
D $$p + q$$  and $$p - q$$
Answer :   $$- p$$ and $$- q$$
Discuss Question

97. If $$\alpha $$ and $$\beta $$ be the values of $$x$$ in $${m^2}\left( {{x^2} - x} \right) + 2mx + 3 = 0$$      and $${m_1}$$ and $${m_2}$$ be two values of $$m$$ for which $$\alpha $$ and $$\beta $$ are connected by the relation $$\frac{\alpha }{\beta } + \frac{\beta }{\alpha } = \frac{4}{3}.$$   Then the value of $$\frac{{m_1^2}}{{{m_2}}} + \frac{{m_2^2}}{{{m_1}}}$$  is

A $$6$$
B $$68$$
C $$\frac{3}{{68}}$$
D $$ - \frac{68}{{3}}$$
Answer :   $$ - \frac{68}{{3}}$$
Discuss Question

98. If $$\alpha \ne \beta \,\,{\text{but }}{\alpha ^2} = 5\alpha - 3\,\,{\text{and }}{\beta ^2} = 5\beta - 3$$         then the equation having $$\frac{\alpha }{\beta }$$ and $$\frac{\beta }{\alpha }$$ as its root is

A $$3{x^2} - 19x + 3 = 0$$
B $$3{x^2} + 19x - 3 = 0$$
C $$3{x^2} - 19x - 3 = 0$$
D $${x^2} - 5x + 3 = 0$$
Answer :   $$3{x^2} - 19x + 3 = 0$$
Discuss Question

99. If the equations $${x^2} + 2x + 3 = 0\,\,{\text{and }}\,a{x^2} + bx + c = 0,a,b,c \in R,$$          have a common root, then $$a : b : c$$   is

A $$1 : 2 : 3$$
B $$3 : 2 : 1$$
C $$1 : 3 : 2$$
D $$3 : 1 : 2$$
Answer :   $$1 : 2 : 3$$
Discuss Question

100. The solution set of $$\frac{{{x^2} - 3x + 4}}{{x + 1}} > 1,x \in R,$$     is

A $$\left( {3, + \infty } \right)$$
B $$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$
C $$\left[ { - 1,1} \right] \cup \left[ {3, + \infty } \right)$$
D None of these
Answer :   $$\left( { - 1,1} \right) \cup \left( {3, + \infty } \right)$$
Discuss Question


Practice More MCQ Question on Maths Section