It is a factor if $$a{x^3} + bx + c = \left( {{x^2} + px + 1} \right)\left( {ax + c} \right)$$
$$\eqalign{
& = a{x^3} + \left( {c + ap} \right){x^2} + \left( {pc + a} \right)x + c \cr
& \Rightarrow \,\,c + ap = 0,pc + a = b \cr
& \Rightarrow \,\,p = \frac{{ - c}}{a} = \frac{{b - a}}{c}. \cr} $$
92.
If $$\alpha ,\beta $$ be the roots of $$4{x^2} - 16x + \lambda = 0,\lambda \in R$$ such that $$1 < \alpha < 2$$ and $$2 < \beta < 3$$ then the number of integral solutions of $$\lambda $$ is
94.
If $${a_1},{a_2},.....,{a_n}$$ are positive real numbers whose product is a fixed number $$c,$$ then the minimum value of $${a_1} + {a_2} + ..... + {a_{n - 1}} + 2{a_n}\,\,{\text{is}}$$
A
$$n{\left( {2c} \right)^{\frac{1}{n}}}$$
B
$$\left( {n + 1} \right){c^{\frac{1}{n}}}$$
C
$$2n{c^{\frac{1}{n}}}$$
D
$$\left( {n + 1} \right){\left( {2c} \right)^{\frac{1}{n}}}$$
96.
If $$m$$ and $$n$$ are the roots of the equation $$\left( {x + p} \right)\left( {x + q} \right) - k = 0,$$ then the roots of the equation $$\left( {x - m} \right)\left( {x - n} \right) + k = 0,$$ are
Here, $$m$$ and $$n$$ are the roots of equation.
$$\eqalign{
& \left( {x + p} \right)\left( {x + q} \right) - k = 0 \cr
& {x^2} + x\left( {p + q} \right) + pq - k = 0\,\,\,\,.....\left( {\text{i}} \right) \cr} $$
If $$m$$ and $$n$$ are the roots of equation, then
$$\eqalign{
& \left( {x - m} \right)\left( {x - n} \right) = 0 \cr
& \therefore {x^2} - \left( {m + n} \right)x + mn = 0\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Now equation (i) should be equal to equation (ii),
$$\left( {m + n} \right) = - \left( {p + q} \right)\,\,{\text{and }}mn = pq - k$$
Now, we have to find roots of $$\left( {x - m} \right)\left( {x - n} \right) + k = 0$$
$$\eqalign{
& {x^2} - \left( {m + n} \right)x + mn + k = 0 \cr
& {x^2} + \left( {p + q} \right)x + \left( {pq - k} \right) + k = 0 \cr
& {x^2} + \left( {p + q} \right)x + pq = 0 \cr
& {x^2} + px + qx + pq = 0 \cr
& x\left( {x + p} \right) + q\left( {x + p} \right) = 0 \cr
& \therefore x + q = 0\,\,{\text{or }}x + p = 0 \cr
& \therefore x = - q\,\,{\text{and }}x = - p \cr} $$
97.
If $$\alpha $$ and $$\beta $$ be the values of $$x$$ in $${m^2}\left( {{x^2} - x} \right) + 2mx + 3 = 0$$ and $${m_1}$$ and $${m_2}$$ be two values of $$m$$ for which $$\alpha $$ and $$\beta $$ are connected by the relation $$\frac{\alpha }{\beta } + \frac{\beta }{\alpha } = \frac{4}{3}.$$ Then the value of $$\frac{{m_1^2}}{{{m_2}}} + \frac{{m_2^2}}{{{m_1}}}$$ is
98.
If $$\alpha \ne \beta \,\,{\text{but }}{\alpha ^2} = 5\alpha - 3\,\,{\text{and }}{\beta ^2} = 5\beta - 3$$ then the equation having $$\frac{\alpha }{\beta }$$ and $$\frac{\beta }{\alpha }$$ as its root is
Given equation are
$$\eqalign{
& {x^2} + 2x + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {\text{i}} \right) \cr
& a{x^2} + bx + c = 0\,\,\,\,\,\,\,\,\,\,\,\left( {{\text{ii}}} \right) \cr} $$
Roots of equation (i) are imaginary roots.
According to the question (ii) will also have both roots same as (i). Thus
$$\eqalign{
& \frac{a}{1} = \frac{b}{2} = \frac{c}{3} = \lambda \,\,\,\,\,\left( {{\text{say}}} \right) \cr
& \Rightarrow \,\,a = \lambda ,b = 2\lambda ,c = 3\lambda \cr} $$
Hence, required ratio is $$1 : 2 : 3$$
100.
The solution set of $$\frac{{{x^2} - 3x + 4}}{{x + 1}} > 1,x \in R,$$ is