$$\eqalign{
& {\left( {1073} \right)^{71}} - m = {\left( {73 + 1000} \right)^{71}} - m \cr
& = {\,^{71}}{C_0}{\left( {73} \right)^{71}} + {\,^{71}}{C_1}{\left( {73} \right)^{70}}\left( {1000} \right) + {\,^{71}}{C_2}{\left( {73} \right)^{69}}{\left( {1000} \right)^2} + ..... + {\,^{71}}{C_{71}}{\left( {1000} \right)^{71}} - m \cr} $$
Above will be divisible by 10 if $$^{71}{C_0}{\left( {73} \right)^{71}}$$ is divisible by 10
Now, $$^{71}{C_0}{\left( {73} \right)^{71}} = {\left( {73} \right)^{70}} \cdot 73 = {\left( {{{73}^2}} \right)^{35}} \cdot 73$$
The last digit of $$73^2$$ is 9, so the last digit of $${\left( {{{73}^2}} \right)^{35}}$$ is 9.
$$\therefore $$ Last digit of $${\left( {{{73}^2}} \right)^{35}} \cdot 73{\text{ is }}7$$
Hence, the minimum positive integral value of $$m$$ is 7, so that it is divisible by 10.
13.
For natural numbers $$m, n$$ if $${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + .....$$ and $${a_1} = {a_2} = 10,$$ then $$\left( {m,n} \right)$$ is
Here, $${T_{r + 1}} = {\,^{10}}{C_r}{\left( {\sqrt 2 } \right)^{10 - r}}{\left( {{3^{\frac{1}{5}}}} \right)^r},$$ where $$r = 0, 1, 2, ..... ,10.$$
We observe that in general term $$T_{r + 1}$$ powers of 2 and 3 are $$\frac{1}{2}\left( {10 - r} \right)$$ and $$\frac{1}{5}r$$ respectively and $$0 \leqslant r \leqslant 10.$$
So, both these powers will be integers together only when $$r = 0$$ or 10
$$\therefore $$ Sum of required terms $$ = {T_1} + {T_{11}}$$
$$ = {\,^{10}}{C_0}{\left( {\sqrt 2 } \right)^{10}} + {\,^{10}}{C_{10}}{\left( {{3^{\frac{1}{5}}}} \right)^{10}} = 32 + 9 = 41$$
17.
The sum of the series $$^{20}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... - ..... + {\,^{20}}{C_{10}}$$ is
$$\sum\limits_{i = 0}^m {^{10}{C_i}^{20}{C_{m - i}} = {\,^{10}}{C_0}{\,^{20}}{C_m} + {\,^{10}}{C_1}{\,^{20}}{C_{m - 1}} + {\,^{10}}{C_2}{\,^{20}}{C_{m - 2}}} + ..... + {\,^{10}}{C_m}{\,^{20}}{C_0}$$
= Co-eff of $${x^m}$$ in the expansion of product $${\left( {1 + x} \right)^{10}}{\left( {1 + x} \right)^{20}}$$
= Co-eff. of $${x^m}$$ in the expansion of $${\left( {1 + x} \right)^{30}}$$
$$ = \,{\,^{30}}{C_m}$$
To get max. value of given sum, $$^{30}{C_m}\,$$ should be max.
which is so when $$m = \frac{{30}}{2} = 15.$$
\[\left[ {{\rm{Using\, the\, fact\, that\, max }}\left( {^n{C_r}} \right) = \left\{ \begin{array}{l}
^n{C_{\frac{n}{2}}}\,\,{\rm{if }}\,n\,{\rm{is\, even}}\\
^n{C_{\frac{{n + 1}}{2}}}\,{\rm{if }}\,n\,{\rm{is\, odd}}
\end{array} \right.} \right]\]