131. If the expansion in powers of $$x$$ of the function $$\frac{1}{{\left( {1 - ax} \right)\left( {1 - bx} \right)}}$$    is $${a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3}......$$       then $${a_n}$$ is

A $$\frac{{{b^n} - {a^n}}}{{b - a}}$$
B $$\frac{{{a^n} - {b^n}}}{{b - a}}$$
C $$\frac{{{a^{n+1}} - {b^{n+1}}}}{{b - a}}$$
D $$\frac{{{b^{n+1}} - {a^{n+1}}}}{{b - a}}$$
Answer :   $$\frac{{{b^{n+1}} - {a^{n+1}}}}{{b - a}}$$
Discuss Question

132. The value of $$^{20}{C_0} + {\,^{20}}{C_1} + {\,^{20}}{C_2} + {\,^{20}}{C_3} + {\,^{20}}{C_4} + {\,^{20}}{C_{12}} + {\,^{20}}{C_{13}} + {\,^{20}}{C_{14}} + {\,^{20}}{C_{15}}$$              is

A $${2^{19}} - \frac{{\left( {^{20}{C_{10}} + {\,^{20}}{C_9}} \right)}}{2}$$
B $${2^{19}} - \frac{{\left( {^{20}{C_{10}} + 2 \times {\,^{20}}{C_9}} \right)}}{2}$$
C $${2^{19}} - \frac{{^{20}{C_{10}}}}{2}$$
D None of these
Answer :   $${2^{19}} - \frac{{\left( {^{20}{C_{10}} + 2 \times {\,^{20}}{C_9}} \right)}}{2}$$
Discuss Question

133. The term independent of $$x$$ in the expansion of $${\left[ {\left( {{t^{ - 1}} - 1} \right)x + {{\left( {{t^{ - 1}} + 1} \right)}^{ - 1}}{x^{ - 1}}} \right]^8}{\text{is}}$$

A $${\text{56}}{\left( {\frac{{1 - t}}{{1 + t}}} \right)^3}$$
B $${\text{56}}{\left( {\frac{{1 + t}}{{1 - t}}} \right)^3}$$
C $${\text{70}}{\left( {\frac{{1 - t}}{{1 + t}}} \right)^4}$$
D $${\text{70}}{\left( {\frac{{1 + t}}{{1 - t}}} \right)^4}$$
Answer :   $${\text{70}}{\left( {\frac{{1 - t}}{{1 + t}}} \right)^4}$$
Discuss Question

134. $$\frac{1}{2}{x^2} + \frac{2}{3}{x^3} + \frac{3}{4}{x^4} + \frac{4}{5}{x^5} + .....{\text{is}}$$

A $$\frac{x}{{1 + x}} + \log \left( {1 + x} \right)$$
B $$\frac{x}{{1 - x}} + \log \left( {1 + x} \right)$$
C $$ - \frac{x}{{1 + x}} + \log \left( {1 + x} \right)$$
D $$\frac{x}{{1 - x}} + \log \left( {1 - x} \right)$$
Answer :   $$\frac{x}{{1 - x}} + \log \left( {1 - x} \right)$$
Discuss Question

135. The number of terms whose values depend on $$x$$ in the expansion of $${\left( {{x^2} - 2 + \frac{1}{{{x^2}}}} \right)^n}$$   is

A $$2n + 1$$
B $$2n$$
C $$n$$
D None of these
Answer :   $$2n$$
Discuss Question

136. The coefficient of $$x^n$$ in the expansion of $${\left( {1 - 9x + 20{x^2}} \right)^{ - 1}}\,$$   is

A $$5^n - 4^n$$
B $$5^{n + 1} - 4^{n + 1}$$
C $$5^{n - 1} - 4^{n - 1}$$
D None of these
Answer :   $$5^{n + 1} - 4^{n + 1}$$
Discuss Question

137. The co-efficient of $$x^n$$ in the expansion of $$\frac{{{e^{7x}} + {e^x}}}{{{e^{3x}}}}$$   is

A $$\frac{{{4^{n - 1}} + {{\left( { - 2} \right)}^n}}}{{n!}}$$
B $$\frac{{{4^{n - 1}} + {2^n}}}{{n!}}$$
C $$\frac{{{4^{n}} + {{\left( { - 2} \right)}^n}}}{{n!}}$$
D $$\frac{{{4^{n - 1}} + {{\left( { - 2} \right)}^{n - 1}}}}{{n!}}$$
Answer :   $$\frac{{{4^{n}} + {{\left( { - 2} \right)}^n}}}{{n!}}$$
Discuss Question

138. The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A 5
B 6
C 7
D 8
Answer :   7
Discuss Question

139. The sum $$^{20}{C_0} + {\,^{20}}{C_1} + {\,^{20}}{C_2} + ..... + {\,^{20}}{C_{10}}$$       is equal to

A $${2^{20}} + \frac{{20!}}{{{{\left( {10!} \right)}^2}}}$$
B $${2^{19}} - \frac{1}{2} \cdot \frac{{20!}}{{{{\left( {10!} \right)}^2}}}$$
C $${2^{19}} + {\,^{20}}{C_{10}}$$
D None of these
Answer :   None of these
Discuss Question

140. If $$x + y = 1,$$   then $$\sum\limits_{r = 0}^n {r{\,^n}{C_r}\,{x^r}{y^{n - r}}} $$    equals

A $$1$$
B $$n$$
C $$nx$$
D $$ny$$
Answer :   $$nx$$
Discuss Question


Practice More MCQ Question on Maths Section