61.
If the co-efficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {\frac{1}{{bx}}} \right)} \right]^{11}}$$ equals the co-efficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {\frac{1}{{b{x^2}}}} \right)} \right]^{11}},$$ then $$a$$ and $$b$$ satisfy the relation
$${T_{r + 1}}$$ in the expansion
$$\eqalign{
& {\left[ {a{x^2} + \left( {\frac{1}{{bx}}} \right)} \right]^{11}} = {\,^{11}}{C_r}{\left( {a{x^2}} \right)^{11 - r}}{\left( {\frac{1}{{bx}}} \right)^r} \cr
& = {\,^{11}}{C_r}{\left( a \right)^{11 - r}}{\left( b \right)^{ - r}}{\left( x \right)^{22 - 2r - r}} \cr} $$
For the Co-efficient of $${x^7},$$ we have
$$\eqalign{
& \Rightarrow \,\,22 - 3r = 7 \cr
& \Rightarrow \,\,r = 5 \cr} $$
$$\therefore \,\,{\text{Co-eff}}{\text{. of }}{x^7} = {\,^{11}}{C_5}{\left( a \right)^6}{\left( b \right)^{ - 5}}\,\,\,\,\,\,\,\,.....\left( 1 \right)$$
Again $${T_{r + 1}}$$ in the expansion
$$\eqalign{
& {\left[ {ax - \frac{1}{{b{x^2}}}} \right]^{11}} = {\,^{11}}{C_r}{\left( {a{x^2}} \right)^{11 - r}}{\left( { - \frac{1}{{b{x^2}}}} \right)^r} \cr
& = {\,^{11}}{C_r}{\left( a \right)^{11 - r}}{\left( { - 1} \right)^r} \times {\left( b \right)^{ - r}}{\left( x \right)^{ - 2r}}{\left( x \right)^{11 - r}} \cr} $$
For the Co-efficient of $${x^{ - 7}},$$ we have
$$\eqalign{
& {\text{Now }}11 - 3r = - 7 \cr
& \Rightarrow \,\,3r = 18 \cr
& \Rightarrow \,\,r = 6 \cr
& \therefore \,\,{\text{Co-eff}}{\text{. of }}{x^{ - 7}} = {\,^{11}}{C_6}{a^5} \times 1 \times {\left( b \right)^{ - 6}} \cr
& \therefore \,\,{\text{Co-eff}}{\text{. of }}{x^7} = {\text{Co-eff}}{\text{. of }}{x^{ - 7}} \cr
& \Rightarrow \,{\,^{11}}{C_5}{\left( a \right)^6}{\left( b \right)^{ - 5}} \cr
& = \,{\,^{11}}{C_6}{a^5} \times {\left( b \right)^{ - 6}} \cr
& \Rightarrow \,\,ab = 1. \cr} $$
62.
If the $$7^{th}$$ term in the binomial expansion of $${\left( {\frac{3}{{\root 3 \of {84} }} + \sqrt 3 \ln x} \right)^9},x > 0,$$ is equal to 729, then $$x$$ can be
Let $$r + 1 = 7$$
$$ \Rightarrow r = 6$$
Given expansion is $${\left( {\frac{3}{{\root 3 \of {84} }} + \sqrt 3 \ln x} \right)^9},x > 0$$
We have $${T_{r + 1}} = {\,^n}{C_r}{\left( x \right)^{n - r}}{a^r}{\text{ for }}{\left( {x + a} \right)^n}.$$
$$\therefore $$ According to the question
$$\eqalign{
& 729 = {\,^9}{C_6}{\left( {\frac{3}{{\root 3 \of {84} }}} \right)^3} \cdot {\left( {\sqrt 3 \ln x} \right)^6} \cr
& \Rightarrow {3^6} = 84 \times \frac{{{3^3}}}{{84}} \times {3^3} \times \left( {6\ln x} \right) \cr
& \Rightarrow {\left( {\ln x} \right)^6} = 1 \cr
& \Rightarrow {\left( {\ln x} \right)^6} = {\left( {\ln e} \right)^6} \cr
& \Rightarrow x = e \cr} $$
63.
For $$r = 0,1, . . . . . , 10,$$ let $${A_r},{B_r}\,{\text{and }}{C_r}$$ denote, respectively, the co - efficient of $${x^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},{\left( {1 + x} \right)^{20}}\,{\text{and }}{\left( {1 + x} \right)^{30}}.$$ Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
A
$${B_{10}} - {C_{10}}$$
B
$${A_{10}}\left( {{B^2}_{10}{C_{10}}{A_{10}}} \right)$$
To find
$$^{30}{C_0}^{30}{C_{10}} - {\,^{30}}{C_1}^{30}{C_{11}} + {\,^{30}}{C_2}^{30}{C_{12}} - ..... + {\,^{30}}{C_{20}}^{30}{C_{30}}$$
We know that
$$\eqalign{
& {\left( {1 + x} \right)^{30}} = {\,^{30}}{C_0} + {\,^{30}}{C_1}x + {\,^{30}}{C_2}{x^2} + ..... + {\,^{30}}{C_{20}}{x^{20}} + .....{\,^{30}}{C_{30}}{x^{30}}\,\,\,\,.....\left( 1 \right) \cr
& {\left( {x - 1} \right)^{30}} = {\,^{30}}{C_0}{x^{30}} - {\,^{30}}{C_1}{x^{29}} + ..... + {\,^{30}}{C_{10}}{x^{20}} - {\,^{30}}{C_{11}}{x^{19}} + {\,^{30}}{C_{12}}{x^{18}} + .....{\,^{30}}{C_{30}}{x^0}\,\,\,.....\left( 2 \right) \cr} $$
Multiplying eqn. (1) and (2), we get
$${\left( {{x^2} - 1} \right)^{30}} = \left( 1 \right) \times \left( 2 \right)$$
Equating the coefficients of $$x^{20}$$ on both sides, we get
$$\eqalign{
& ^{30}{C_{10}} = {\,^{30}}{C_0}^{30}{C_{10}} - {\,^{30}}{C_1}^{30}{C_{11}} + {\,^{30}}{C_2}^{30}{C_{12}} - ..... + {\,^{30}}{C_{20}}^{30}{C_{30}} \cr
& \therefore {\text{Req}}{\text{. value is}}{{\text{ }}^{30}}{C_{10}} \cr} $$
65.
The sum of the series $$\frac{2}{1} \cdot \frac{1}{3} + \frac{3}{2} \cdot \frac{1}{9} + \frac{4}{3} \cdot \frac{1}{{27}} + \frac{5}{4} \cdot \frac{1}{{81}} + .....\infty $$ is equal to
66.
Let $$f\left( n \right) = {10^n} + 3 \cdot {4^{n + 2}} + 5,n \in N.$$ The greatest value of the integer which divides $$f\left( n \right)$$ for all $$n$$ is
Expression $$ = {10^n} - 1 + 3 \cdot {4^{n + 2}} + 6 = \left( {{{10}^n} - 1} \right) + 6\left( {{2^{2n + 3}} + 1} \right)$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {10 - 1} \right)\left\{ {{{10}^{n - 1}} + {{10}^{n - 2}} + ..... + 10 + 1} \right\} + 6\left( {2 + 1} \right)\left\{ {{2^{2n + 2}} - {2^{2n + 1}} + ..... - 2 + 1} \right\}.$$
$${10^{n - 1}} + {10^{n - 2}} + ..... + 10 + 1$$ is an odd number which is not divisible by any odd number for all $$n \cdot {2^{2n + 2}} - {2^{2n + 1}} + ..... - 2 + 1$$ is also an odd number which is not divisible by any odd number for all $$n.$$
∴ the expression is divisible by $$9.$$
67.
If the sum of the coefficients in the expansion of $${\left( {1 - 3x + 10{x^2}} \right)^n}\,$$ is $$a$$ and if the sum of the coefficients in the expansion of $${\left( {1 + {x^2}} \right)^n}$$ is $$b,$$ then
We have $$a =$$ sum of the coefficient in the expansion $${\left( {1 - 3x + 10{x^2}} \right)^n} = {\left( {1 - 3 + 10} \right)^n} = {\left( 8 \right)^n}$$
$$ \Rightarrow {\left( {1 - 3x + 10{x^2}} \right)^n} = {\left( 2 \right)^{3n}},\left[ {{\text{Putting }}x = 1} \right]$$
Now, $$b =$$ sum of the coefficient in the expansion of $${\left( {1 + {x^2}} \right)^n} = {\left( {1 + 1} \right)^n} = 2n.\,\,{\text{Clearly, }}a = {b^3}$$
68.
If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$ the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is