31.
For $$2 \leqslant r \leqslant n,$$ \[\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right) + 2\left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 2}
\end{array}} \right) = \]
A
\[\left( {\begin{array}{*{20}{c}}
{n + 1}\\
{r - 1}
\end{array}} \right)\]
B
\[2\left( {\begin{array}{*{20}{c}}
{n + 1}\\
{r + 1}
\end{array}} \right)\]
C
\[2\left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
D
\[\left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
Answer :
\[\left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
View Solution
Discuss Question
\[\begin{array}{l}
\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right) + 2\left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 2}
\end{array}} \right)\\
= \left[ {\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right)} \right] + \left[ {\left( {\begin{array}{*{20}{c}}
n\\
{r - 1}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
n\\
{r - 2}
\end{array}} \right)} \right]
\end{array}\]
NOTE THIS STEP :
\[\left( {\begin{array}{*{20}{c}}
{n + 1}\\
r
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{n + 1}\\
{r - 1}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{n + 2}\\
r
\end{array}} \right)\]
$$\left[ {\because \,{\,^n}{C_r} + {\,^n}{C_{r - 1}} = {\,^{n + 1}}{C_r}} \right]$$
32.
If $$^{n - 1}{C_r} = \left( {{k^2} - 3} \right){\,^n}{C_{r + 1}},$$ then $$k \in $$
A
$$\left( { - \infty , - 2} \right]$$
B
$$\left[ {2,\infty } \right)$$
C
$$\left[ { - \sqrt 3 ,\sqrt 3 } \right]$$
D
$$\left( {\sqrt 3 ,2} \right]$$
Answer :
$$\left( {\sqrt 3 ,2} \right]$$
View Solution
Discuss Question
$$\eqalign{
& ^{n - 1}{C_r} = {\,^n}{C_{r + 1}}\left( {{k^2} - 3} \right) \cr
& \Rightarrow \,\,{k^2} - 3 = \frac{{^{n - 1}{C_r}}}{{^n{C_{r + 1}}}} = \frac{{r + 1}}{n} \cr
& {\text{Since }}0 \leqslant r \leqslant n - 1 \cr
& \Rightarrow \,\,1 \leqslant r + 1 \leqslant n \cr
& \Rightarrow \,\,\frac{1}{n} \leqslant \frac{{r + 1}}{n} \leqslant 1 \cr
& \Rightarrow \,\,\frac{1}{n} \leqslant {k^2} - 3 \leqslant 1 \cr
& \Rightarrow \,\,3 + \frac{1}{n} \leqslant {k^2} \leqslant 4 \cr
& \Rightarrow \,\,\sqrt {3 + \frac{1}{n}} \leqslant k \leqslant 2 \cr
& {\text{as }}\,n \to \infty \cr
& \Rightarrow \,\,\sqrt 3 < k \leqslant 2 \cr
& \Rightarrow \,\,k \in \left( {\sqrt 3 ,2} \right] \cr} $$
33.
The value of \[\left( {\begin{array}{*{20}{c}}
{30}\\
0
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{30}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{30}\\
1
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{30}\\
{11}
\end{array}} \right) + \left( {\begin{array}{*{20}{c}}
{30}\\
2
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{30}\\
{12}
\end{array}} \right) ..... + \left( {\begin{array}{*{20}{c}}
{30}\\
{20}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{30}\\
{30}
\end{array}} \right)\] is where \[\left( {\begin{array}{*{20}{c}}
n\\
r
\end{array}} \right) = {\,^n}{C_r}\]
A
\[\left( {\begin{array}{*{20}{c}}
{30}\\
{10}
\end{array}} \right)\]
B
\[\left( {\begin{array}{*{20}{c}}
{30}\\
{15}
\end{array}} \right)\]
C
\[\left( {\begin{array}{*{20}{c}}
{60}\\
{30}
\end{array}} \right)\]
D
\[\left( {\begin{array}{*{20}{c}}
{31}\\
{10}
\end{array}} \right)\]
Answer :
\[\left( {\begin{array}{*{20}{c}}
{30}\\
{10}
\end{array}} \right)\]
View Solution
Discuss Question
To find
$$^{30}{C_0}^{30}{C_{10}} - {\,^{30}}{C_1}^{30}{C_{11}} + {\,^{30}}{C_2}^{30}{C_{12}} - .....{ + ^{30}}{C_{20}}^{30}{C_{30}}$$
We know that
$$\eqalign{
& {\left( {1 + x} \right)^{30}}{ = ^{30}}{C_0} + {\,^{30}}{C_1}x + {\,^{30}}{C_2}{x^2} + ..... + {\,^{30}}{C_{20}}{x^{20}} + .....{\,^{30}}{C_{30}}{x^{30}}\,\,\,\,\,\,.....\left( 1 \right) \cr
& {\left( {x - 1} \right)^{30}} = {\,^{30}}{C_0}{x^{30}} - {\,^{30}}{C_1}{x^{29}} + ..... + {\,^{30}}{C_{10}}{x^{20}} - {\,^{30}}{C_{11}}{x^{19}} + {\,^{30}}{C_{12}}{x^{18}} + {.....^{30}}{C_{30}}{x^0}\,\,\,\,\,\,.....\left( 2 \right) \cr} $$
Multiplying $${\text{e}}{{\text{q}}^n}$$ (1) and (2), we get
$${\left( {{x^2} - 1} \right)^{30}} = \left( {} \right) \times \left( {} \right)$$
Equating the co - efficients of $${x^{20}}$$ on both sides, we get
$$^{30}{C_{10}} = {\,^{30}}{C_0}^{30}{C_{10}} - {\,^{30}}{C_1}^{30}{C_{11}} + {\,^{30}}{C_2}^{30}{C_{12}} - ..... + {\,^{30}}{C_{20}}^{30}{C_{30}}$$
∴ Req. value is $$^{30}{C_{10}}$$
34.
If $$x = {\left( {2 + \sqrt 3 } \right)^n},\,$$ then find the value of $$x\left( {1 - \left\{ x \right\}} \right),$$ where $${\left\{ x \right\}}$$ denotes the fractional part of $$x$$
A
$$1$$
B
$$2$$
C
$$2^{2n}$$
D
$$2^n$$
Answer :
$$1$$
View Solution
Discuss Question
$$\eqalign{
& x = {\left( {2 + \sqrt 3 } \right)^n} \cr
& = {\,^n}{C_0}{2^n} + {\,^n}{C_1}{2^{n - 1}}\sqrt 3 + {\,^n}{C_2}{2^{n - 2}}{\left( {\sqrt 3 } \right)^2} + ..... \cr
& {\text{Let, }}{x_1} = {\left( {2 - \sqrt 3 } \right)^n} \cr
& = {\,^n}{C_0}{2^n} - {\,^n}{C_1}{2^{n - 1}}\sqrt 3 + {\,^n}{C_2}{2^{n - 2}}{\left( {\sqrt 3 } \right)^2} + ..... \cr
& x + {x_1} = 2\left( {^n{C_0}{2^n} + {\,^n}{C_2}{2^{n - 2}}{{\left( {\sqrt 3 } \right)}^2} + .....} \right) \cr} $$
= Even integer.
Clearly, $$x, \in \left( {0,1} \right)\forall n \in N$$
$$\eqalign{
& \Rightarrow \left[ x \right] + \left\{ x \right\} + {x_1} = {\text{Even integer}} \cr
& \Rightarrow \left\{ x \right\} + {x_1} = {\text{Integer }}\left\{ x \right\} \in \left( {0,1} \right),{x_1} \in \left( {0,1} \right) \cr
& \Rightarrow \left\{ x \right\} + {x_1} \in \left( {0,2} \right) \cr
& \Rightarrow \left\{ x \right\} + {x_1} = 1 \cr
& \Rightarrow {x_1} = 1 - \left\{ x \right\} \cr
& \Rightarrow x\left( {1 - \left\{ x \right\}} \right) = x \cdot {x_1} = {\left( {2 + \sqrt 3 } \right)^n}{\left( {2 - \sqrt 3 } \right)^n} = 1 \cr} $$
35.
The number of distinct terms in the expansion of $${\left( {x + y - z} \right)^{16}}$$ is
A
136
B
153
C
16
D
17
Answer :
153
View Solution
Discuss Question
$${\left( {x + y - z} \right)^{16}} = {\,^{16}}{C_0}{x^{16}} + {\,^{16}}{C_1}{x^{15}}\left( {y - z} \right) + ..... + {\,^{16}}{C_r}{x^{16 - r}}{\left( {y - z} \right)^r} + ..... + {\,^{16}}{C_{16}}{\left( {y - z} \right)^{16}}.$$
Clearly, all the terms are distinct.
∴ the number of distinct terms
$$ = 1 + 2 + 3 + ..... + 17 = \frac{{17 \times 18}}{2}.$$
36.
If $$\pi \left( n \right)$$ denotes product of all binomial coefficients in $${\left( {1 + x} \right)^n},$$ then ratio of $$\pi \left( {2002} \right)$$ to $$\pi \left( {2001} \right)$$ is
A
$$2002$$
B
$$\frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}}$$
C
$$\frac{{{{\left( {2001} \right)}^{2002}}}}{{\left( {2002} \right)!}}$$
D
$$2001$$
Answer :
$$\frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{\pi \left( n \right)}}{{\pi \left( {n + 1} \right)}} = \frac{{^n{C_0} \cdot {\,^n}{C_1} \cdot {\,^n}{C_2}{{.....}^n}{C_n}}}{{^{n + 1}{C_0} \cdot {\,^{n + 1}}{C_1} \cdot {\,^{n + 1}}{C_2}{{.....}^{n + 1}}{C_{n + 1}}}} \cr
& = \frac{1}{{^{n + 1}{C_0}}}\left( {\frac{{^n{C_0}}}{{^{n + 1}{C_1}}}} \right)\left( {\frac{{^n{C_1}}}{{^{n + 1}{C_2}}}} \right).....\left( {\frac{{^n{C_n}}}{{^{n + 1}{C_{n + 1}}}}} \right) \cr
& = \frac{1}{1}\left( {\frac{1}{{n + 1}}} \right)\left( {\frac{2}{{n + 1}}} \right).....\left( {\frac{{n + 1}}{{n + 1}}} \right)\left[ {\because \frac{{^n{C_r}}}{{^{n + 1}{C_{r + 1}}}} = \frac{{r + 1}}{{n + 1}}} \right] \cr
& = \frac{{\left( {n + 1} \right)!}}{{{{\left( {n + 1} \right)}^{n + 1}}}} = \frac{{n!}}{{{{\left( {n + 1} \right)}^n}}} \cr
& \therefore \frac{{\pi \left( {2002} \right)}}{{\pi \left( {2001} \right)}} = \frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}} \cr} $$
37.
The sum of the co-efficients in the binomial expansion of $${\left( {\frac{1}{x} + 2x} \right)^n}$$ is equal to 6561. The constant term in the expansion is
A
$$^8{C_4}$$
B
$$16 \cdot {\,^8}{C_4}$$
C
$$^6{C_4} \cdot {2^4}$$
D
None of these
Answer :
$$16 \cdot {\,^8}{C_4}$$
View Solution
Discuss Question
The sum of all the co-efficients in an expansion is obtained by putting $$x = 1$$ in the expression.
$$\eqalign{
& \therefore \,\,{\left( {\frac{1}{1} + 2 \cdot 1} \right)^n} = 6561 \cr
& \therefore \,\,{3^n} = {3^8}\,\,\,\,\,\,\,\therefore \,\,n = 8. \cr
& {\text{In}}{\left( {\frac{1}{x} + 2x} \right)^8},{t_{r + 1}} = {\,^8}{C_r} \cdot {\left( {\frac{1}{x}} \right)^{8 - r}} \cdot {\left( {2x} \right)^r}. \cr} $$
This is a constant if $$2r - 8 = 0,\,\,{\text{i}}{\text{.e}}{\text{., }}r = 4.$$
∴ the constant term $$ = {t_5} = {\,^8}{C_4} \cdot {2^4}.$$
38.
The value of $$\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$$ is equal to
A
$$\frac{{{2^n} + 1}}{{n + 1}}$$
B
$$\frac{{{2^n} }}{{n + 1}}$$
C
$$\frac{{{2^n} + 1}}{{n - 1}}$$
D
$$\frac{{{2^n} - 1}}{{n + 1}}$$
Answer :
$$\frac{{{2^n} - 1}}{{n + 1}}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + ..... = \frac{n}{2} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{4!}} + \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{6!}} + ..... \cr
& = \frac{1}{{n + 1}}\left[ {\frac{{\left( {n + 1} \right)n}}{{2!}} + \frac{{\left( {n + 1} \right)n\left( {n - 1} \right)\left( {n - 2} \right)}}{{4!}} + \frac{{\left( {n + 1} \right)n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{6!}} + .....} \right] \cr
& = \frac{1}{{n + 1}}\left[ {^{n + 1}{C_2} + {\,^{n + 1}}{C_4} + {\,^{n + 1}}{C_6} + .....} \right] \cr
& = \frac{1}{{n + 1}}\left[ {{2^{n + 1 - 1}} - {\,^{n + 1}}{C_0}} \right] = \frac{{{2^n} - 1}}{{n + 1}} \cr} $$
39.
$${2^{60}}$$ when divided by 7 leaves the remainder
A
1
B
6
C
5
D
2
Answer :
1
View Solution
Discuss Question
$${2^{60}} = {\left( {1 + 7} \right)^{20}} = {\,^{20}}{C_0} + {\,^{20}}{C_1} \cdot 7 + {\,^{20}}{C_2} \cdot {7^2} + ..... + {\,^{20}}{C_{20}} \cdot {7^{20}}$$
∴ the remainder $$ = {\,^{20}}{C_0} = 1.$$
40.
If $$x$$ is so small that $$x^3$$ and higher powers of $$x$$ may be neglected, then $$\frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{1}{2}x} \right)}^3}}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}$$ may be approximated as
A
$$1 - \frac{3}{8}{x^2}$$
B
$$3x + \frac{3}{8}{x^2}$$
C
$$ - \frac{3}{8}{x^2}$$
D
$$\frac{x}{2} - \frac{3}{8}{x^2}$$
Answer :
$$ - \frac{3}{8}{x^2}$$
View Solution
Discuss Question
$$\because {x^3}$$ and higher powers of $$x$$ may be neglected
$$\eqalign{
& \therefore \frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{x}{2}} \right)}^3}}}{{\left( {1 - {x^{\frac{1}{2}}}} \right)}} \cr
& = {\left( {1 - x} \right)^{ - \frac{1}{2}}}\left[ {\left( {1 + \frac{3}{2}x + \frac{{\frac{3}{2} \cdot \frac{1}{2}}}{{2!}}{x^2}} \right) - \left( {1 + \frac{{3x}}{2} + \frac{{3 \cdot 2}}{{2!}}\frac{{{x^2}}}{4}} \right)} \right] \cr
& = \left[ {1 + \frac{x}{2} + \frac{{\frac{1}{2} \cdot \frac{3}{2}}}{{2!}}{x^2}} \right]\left[ { - \frac{3}{8}{x^2}} \right] = - \frac{3}{8}{x^2} \cr} $$
(as $$x^3$$ and higher powers of $$x$$ can be neglected)