111. Co-efficient of $${x^{11}}$$ in the expansion of $${\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}$$      is

A 1051
B 1106
C 1113
D 1120
Answer :   1113
Discuss Question

112. In the binomial expansion of $${\left( {a - b} \right)^n},n \geqslant 5,$$    the sum of the $${5^{th}}$$ and $${6^{th}}$$ terms is zero. Then $$\frac{a}{b}$$ equals

A $$\frac{{\left( {n - 5} \right)}}{6}$$
B $$\frac{{\left( {n - 4} \right)}}{5}$$
C $$\frac{5}{{\left( {n - 4} \right)}}$$
D $$\frac{6}{{\left( {n - 5} \right)}}$$
Answer :   $$\frac{{\left( {n - 4} \right)}}{5}$$
Discuss Question

113. The coefficient of $$x^{100}$$ in the expansion of $$\sum\limits_{j = 0}^{200} {{{\left( {1 + x} \right)}^j}} $$   is :

A \[\left( {\begin{array}{*{20}{c}} {200}\\ {100} \end{array}} \right)\]
B \[\left( {\begin{array}{*{20}{c}} {201}\\ {102} \end{array}} \right)\]
C \[\left( {\begin{array}{*{20}{c}} {200}\\ {101} \end{array}} \right)\]
D \[\left( {\begin{array}{*{20}{c}} {201}\\ {100} \end{array}} \right)\]
Answer :   \[\left( {\begin{array}{*{20}{c}} {200}\\ {100} \end{array}} \right)\]
Discuss Question

114. The sum $$1 + \frac{{1 + a}}{{2!}} + \frac{{1 + a + {a^2}}}{{3!}} + .....\,\infty $$       is equal to

A $${e^a}$$
B $$\frac{{{e^a} - e}}{{a - 1}}$$
C $$\left( {a - 1} \right){e^a}$$
D $$\left( {a + 1} \right){e^a}$$
Answer :   $$\frac{{{e^a} - e}}{{a - 1}}$$
Discuss Question

115. Let $${S_1} = \sum\limits_{j = 1}^{10} {j\left( {j - 1} \right)\,{\,^{10}}{C_j},\,\,{S_2} = \sum\limits_{j = 1}^{10} {j\,{\,^{10}}{C_j}\,{\text{and }}{S_3} = \sum\limits_{j = 1}^{10} {{j^2}\,{\,^{10}}{C_j}.} } } $$
Statement - 1 : $${S_3} = 55 \times {2^9}.$$
Statement - 2 : $${S_1} = 90 \times {2^8}\,{\text{and }}{S_2} = 10 \times {2^8}.$$

A Statement - 1 is true, Statement - 2 is true ; Statement - 2 is not a correct explanation for Statement - 1.
B Statement - 1 is true, Statement - 2 is false.
C Statement - 1 is false, Statement - 2 is true.
D Statement - 1 is true, Statement - 2 is true ; Statement - 2 is a correct explanation for Statement - 1.
Answer :   Statement - 1 is true, Statement - 2 is false.
Discuss Question

116. $$r$$ and $$n$$ are positive integers $$r > 1, n > 2$$   and co - efficient of $${\left( {r + 2} \right)^{th}}$$  term and $$3{r^{th}}$$ term in the expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal, then $$n$$ equals

A $$3r$$
B $$3r + 1$$
C $$2r$$
D $$2r + 1$$
Answer :   $$2r$$
Discuss Question

117. The number of integral terms in the expansion of $${\left( {\sqrt 3 + \root 8 \of 5 } \right)^{256}}$$   is

A 35
B 32
C 33
D 34
Answer :   33
Discuss Question

118. The co-efficient of $${x^3}{y^4}z$$  in the expansion of $${\left( {1 + x + y - z} \right)^9}$$   is

A $$2 \cdot {\,^9}{C_7} \cdot {\,^7}{C_4}$$
B $$- 2 \cdot {\,^9}{C_2} \cdot {\,^7}{C_3}$$
C $${\,^9}{C_7} \cdot {\,^7}{C_4}$$
D None of these
Answer :   $$- 2 \cdot {\,^9}{C_2} \cdot {\,^7}{C_3}$$
Discuss Question

119. The co-efficients of $${x^p}\,{\text{and }}{x^q}$$   in the expansion of $${\left( {1 + x} \right)^{p + q}}$$   are

A equal
B equal with opposite signs
C reciprocals of each other
D none of these
Answer :   equal
Discuss Question

120. $$1 \cdot {\,^n}{C_1} + 2 \cdot {\,^n}{C_2} + 3 \cdot {\,^n}{C_3} + ..... + n \cdot {\,^n}{C_n}$$         is equal to

A $$\frac{{n\left( {n + 1} \right)}}{4} \cdot {2^n}$$
B $${2^{n + 1}} - 3$$
C $$n \cdot {2^{n - 1}}$$
D None of these
Answer :   $$n \cdot {2^{n - 1}}$$
Discuss Question


Practice More MCQ Question on Maths Section