72.
The d.r. of normal to the plane through $$\left( {1,\,0,\,0} \right),\,\left( {0,\,1,\,0} \right)$$ which makes an angle $$\frac{\pi }{4}$$ with plane $$x+y=3$$ are :
We have, $$z = 0$$ for the point where the line intersects the curve.
Therefore,
$$\eqalign{
& \frac{{x - 2}}{3} = \frac{{y + 1}}{2} = \frac{{0 - 1}}{{ - 1}} \cr
& \Rightarrow \frac{{x - 2}}{3} = 1{\text{ and }}\frac{{y + 1}}{2} = 1 \cr
& \Rightarrow x = 5{\text{ and }}y = 1 \cr} $$
Put these value in $$xy = {c^2},$$ we get,
$$5 = {c^2} \Rightarrow c = \pm 5$$
74.
The distance of the point $$\left( {1,\, - 2,\,3} \right)$$ from the plane $$x - y + z = 5$$ measured parallel to the line $$\frac{x}{2} = \frac{y}{3} = \frac{{z - 1}}{{ - 6}}{\text{ is :}}$$
Given equation of a plane is $$x-2y+2z-5=0$$
So, Equation of parallel plane is given by $$x-2y+2z+d=0$$
Now, it is given that distance from origin to the parallel plane is 1.
$$\therefore \left| {\frac{d}{{\sqrt {{1^2} + {2^2} + {2^2}} }}} \right| = 1\,\,\,\,\,\, \Rightarrow d = \pm 3$$
So equation of required plane $$x - 2y + 2z \pm 3 = 0$$
77.
Which of the following statement is true ?
A
The point $$A\left( {0,\, - 1} \right),\,B\left( {2,\,1} \right),\,C\left( {0,\,3} \right)$$ and $$D\left( { - 2,\,1} \right)$$ are vertices of a rhombus.
B
The points $$A\left( { - 4,\, - 1} \right),\,B\left( { - 2,\, - 4} \right),\,C\left( {4,\,0} \right)$$ and $$D\left( {2,\,3} \right)$$ are vertices of a square.
C
The points $$A\left( { - 2,\, - 1} \right),\,B\left( {1,\,0} \right),\,C\left( {4,\,3} \right)$$ and $$D\left( {1,\,2} \right)$$ are vertices of a parallelogram.
D
None of these
Answer :
The points $$A\left( { - 2,\, - 1} \right),\,B\left( {1,\,0} \right),\,C\left( {4,\,3} \right)$$ and $$D\left( {1,\,2} \right)$$ are vertices of a parallelogram.
$$\left( {\bf{A}} \right)$$ Here $$A\left( {0,\, - 1} \right),\,B\left( {2,\,1} \right),\,C\left( {0,\,3} \right),\,D\left( { - 2,\,1} \right)$$
For a rhombus all four sides are equal but the diagonal are not equal, we see
$$AC = \sqrt {0 + {4^2}} = 4,\,\,BD = \sqrt {{4^2} - 0} = 4$$
Since diagonals are equals therefore it is a square, not rhombus.
$$\left( {\bf{B}} \right)$$ Here $$AB = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}} = \sqrt {13} ,\,\,BC = \sqrt {{6^2} + {4^2}} = \sqrt {52} $$
Since $$AB \ne BC$$ therefore it is not square.
$$\left( {\bf{C}} \right)$$ In this case mid point of $$AC$$ is $$\left( {\frac{{4 - 2}}{2},\,\frac{{3 - 1}}{2}} \right){\text{ or }}\left( {1,\,1} \right)$$
Also mid-point of diagonal $$BD\left( {\frac{{1 + 1}}{2},\,\frac{{0 + 2}}{2}} \right){\text{ or }}\left( {1,\,1} \right)$$
Hence the points are vertices of a parallelogram.
78.
Value of $$\lambda $$ such that the line $$\frac{{x - 1}}{2} = \frac{{y - 1}}{3} = \frac{{z - 1}}{\lambda }$$ is perpendicular to normal to the plane $$\overrightarrow r .\left( {2\overrightarrow i + 3\overrightarrow j + 4\overrightarrow k } \right) = 0$$ is :
Since line is parallel to the plane, vector $$2\overrightarrow i + 3\overrightarrow j + \lambda \overrightarrow k $$ is perpendicular to the normal to
the plane $${2\overrightarrow i + 3\overrightarrow j + 4\overrightarrow k }$$
$$ \Rightarrow 2 \times 2 + 3 \times 3 + 4\lambda = 0\,{\text{or }}\lambda = - \frac{{13}}{4}$$
79.
What is the angle between the planes $$2x - y + z = 6$$ and $$x + y + 2z = 3\,?$$