121.
If the function $$f:R \to R$$ be such that $$f\left( x \right) = x - \left[ x \right],$$ where $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y,$$ then $${f^{ - 1}}\left( x \right)$$ is :
The period of $$\sin \frac{{\pi x}}{3}$$ is $$\frac{{2\pi }}{{\frac{\pi }{3}}},$$ i.e., 6. The period of $$\cos \frac{{\pi x}}{4}$$ is $$\frac{{2\pi }}{{\frac{\pi }{4}}},$$ i.e., 8.
LCM of 6 and 8 is 24. So, the period of $$f\left( x \right) = 24.$$
124.
A real valued function $$f\left( x \right)$$ satisfies the functional equation $$f\left( {x - y} \right) = f\left( x \right)f\left( y \right) - f\left( {a - x} \right)f\left( {a + y} \right)$$
where $$a$$ is a given constant and $$f\left( 0 \right) = 1,f\left( {2a - x} \right)$$ is equal to
125.
Let $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \geqslant - 1$$
Statement -1 : The set $$\left\{ x \right.:f\left( x \right) = {f^{ - 1}}\left( x \right) = \left\{ {0, - 1} \right\}$$
Statement-2 : $$f$$ is a bijection.
A
Statement-1 is true, Statement-2 is true.
Statement-2 is not a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is false.
C
Statement-1 is false, Statement-2 is true.
D
Statement-1 is true, Statement-2 is true.
Statement-2 is a correct explanation for Statement-1.
Answer :
Statement-1 is true, Statement-2 is false.
Given that $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \geqslant - 1$$
Clearly $${D_f} = \left[ { - ,\infty } \right)$$ but co-domain is not given. Therefore $$f\left( x \right)$$ need not be necessarily onto.
But if $$f\left( x \right)$$ is onto then as $$f\left( x \right)$$ is one one also, $$\left( {x + 1} \right)$$ being something $$+ve,$$ $${f^{ - 1}}\left( x \right)$$ will exist where $${\left( {x + 1} \right)^2} - 1 = y$$
$$\eqalign{
& \Rightarrow x + 1 = \sqrt {y + 1} \,\left( {{\text{ + ve}}\,{\text{square root as}}\,x + 1 \geqslant 0} \right) \cr
& \Rightarrow x = - 1 + \sqrt {y + 1} \Rightarrow {f^{ - 1}}\left( x \right) = \sqrt {x + 1} - 1 \cr
& {\text{Then}}\,f\left( x \right) = {f^{ - 1}}\left( x \right) \Rightarrow {\left( {x + 1} \right)^2} - 1 = \sqrt {x + 1} - 1 \cr
& \Rightarrow {\left( {x + 1} \right)^2} = \sqrt {x + 1} \Rightarrow {\left( {x + 1} \right)^4} = \left( {x + 1} \right) \cr
& \Rightarrow \left( {x + 1} \right)\left[ {{{\left( {x + 1} \right)}^3} - 1} \right] = 0 \Rightarrow x = - 1,0 \cr} $$
$$\therefore $$ The statement-1 is correct but statement-2 is false.
126.
Let $$f:R \to R$$ be any function. Define $$g:R \to R$$ by $$g\left( x \right) = \left| {f\left( x \right)} \right|$$ for all $${x.}$$ Then $${g}$$ is
$$\eqalign{
& {\text{Let}}\,h\left( x \right) = \left| x \right|\,{\text{then}} \cr
& g\left( x \right) = \left| {f\left( x \right)} \right| = h\left( {f\left( x \right)} \right) \cr} $$
Since composition of two continuous functions is continuous, therefore $$g$$ is continuous if $$f$$ is continuous.
127.
The domain of $$F\left( x \right) = \frac{{{{\log }_2}\left( {x + 3} \right)}}{{{x^2} + 3x + 2}}$$ is :
$${6^x} > 0,\,\,{6^{\left| x \right|}} > 0$$ for all $$x\, \in \,R.$$ So, $$f$$ is into. For different $$x,\,{6^x}$$
and $${6^{\left| x \right|}}$$ are different positive numbers. Clearly, $$f$$ is one-one.
129.
Find the domain of $$f\left( x \right) = \sqrt {{{\left( {0.625} \right)}^{4 - 3x}} - {{\left( {1.6} \right)}^{x\left( {x + 8} \right)}}} $$