81.
Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$ are always
A
positive
B
real
C
negative
D
none of these.
Answer :
real
View Solution
Discuss Question
The given equation is
$$\eqalign{
& \,\,\,\,\,\,\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0 \cr
& \Rightarrow \,\,3{x^2} - 2\left( {a + b + c} \right)x + \left( {ab + bc + ca} \right) = 0 \cr
& \,\,\,\,\,\,{\text{Discriminant}} = 4{\left( {a + b + c} \right)^2} - 12\left( {ab + bc + ca} \right) \cr
& \,\,\,\,\,\,\, = 4\left[ {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right] \cr
& \,\,\,\,\,\,\, = 2\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right] \geqslant 0\,\,\forall \,\,a,b,c \cr
& \therefore {\text{ Roots of given equation are always real}}{\text{.}} \cr} $$
82.
For the equation $$3{x^2} + px + 3 = 0,p > 0,$$ if one of the root is square of the other, then $$p$$ is equal to
A
$$\frac{1}{3}$$
B
1
C
3
D
$$\frac{2}{3}$$
Answer :
3
View Solution
Discuss Question
Let $$\alpha ,{\alpha ^2}$$ be the root of $$3{x^2} + px + 3.$$
$$\eqalign{
& \therefore \,\,\alpha + {\alpha ^2} = - \frac{p}{3}\,\,{\text{and }}{\alpha ^3} = 1 \cr
& \Rightarrow \,\,\left( {\alpha - 1} \right)\left( {{\alpha ^2} + \alpha + 1} \right) = 0 \cr
& \Rightarrow \,\,\alpha = 1\,\,{\text{or }}{\alpha ^2} + \alpha = - 1 \cr
& {\text{If }}\alpha = 1,p = - 6\,\,{\text{which is not possible as }}\,p > 0 \cr
& {\text{If }}{\alpha ^2} + \alpha = - 1 \cr
& \Rightarrow \,\, - \frac{p}{3} = - 1 \cr
& \Rightarrow \,\,p = 3. \cr} $$
83.
The number of solutions of $$\left| {\left[ x \right] - 2x} \right| = 4,$$ where $$[x]$$ is the greatest integer $$ \leqslant x,$$ is
A
2
B
4
C
1
D
infinite
Answer :
4
View Solution
Discuss Question
$$\eqalign{
& {\text{Given, }}\left| {\left[ x \right] - 2x} \right| = 4 \cr
& \Rightarrow \left[ x \right] - 2x = \pm 4 \cr
& \Rightarrow - \left[ {\left\{ x \right\} + x} \right] = \pm 4 \cr
& {\text{The possible values are }} - 4,\,4,\,3.5,\, - 4.5 \cr
& {\text{So, total 4 values exist}}{\text{.}} \cr} $$
84.
The number of real solutions of $$1 + \left| {{e^x} - 1} \right| = {e^x}\left( {{e^x} - 2} \right)$$ is
A
0
B
1
C
2
D
4
Answer :
1
View Solution
Discuss Question
$$\eqalign{
& 2 + \left| {{e^x} - 1} \right| = {\left( {{e^x}} \right)^2} - 2{e^x} + 1 = {\left| {{e^x} - 1} \right|^2} \cr
& \therefore \,\,{\left| {{e^x} - 1} \right|^2} - \left| {{e^x} - 1} \right| - 2 = 0 \cr
& {\text{or, }}\left| {{e^x} - 1} \right| = 2, - 1 \cr
& \Rightarrow \,\,\left| {{e^x} - 1} \right| = 2 \cr
& \Rightarrow \,\,{e^x} - 1 = 2, - 2 \cr
& \Rightarrow \,\,{e^x} = 3, - 1 \cr
& \Rightarrow \,\,{e^x} = 3. \cr} $$
85.
Let $$p,q \in \left\{ {1,2,3,4} \right\}.$$ The number of equations of the form $$p{x^2} + qx + 1 = 0$$ having real roots is
A
15
B
9
C
7
D
8
Answer :
7
View Solution
Discuss Question
For the equation $$p{x^2} + qx + 1 = 0$$ to have real roots
$$\eqalign{
& D \geqslant 0\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,{q^2} \geqslant 4p \cr
& {\text{If }}p = 1\,\,{\text{then }}{q^2} \geqslant 4 \cr
& \Rightarrow \,\,q = 2,3,4 \cr
& {\text{If }}p = 2\,\,{\text{then }}{q^2} \geqslant 8 \cr
& \Rightarrow \,\,q = 3,4 \cr
& {\text{If}}\,{\text{ }}p = 3\,\,{\text{then }}{q^2} \geqslant 12 \cr
& \Rightarrow \,\,q = 4 \cr
& {\text{If }}p = 4\,\,{\text{then }}{q^2} \geqslant 16 \cr
& \Rightarrow \,\,q = 4 \cr
& \therefore \,\,{\text{No}}{\text{. of req}}{\text{. equations}} = 7. \cr} $$
86.
The solutions of the equation $$2x - 2\left[ x \right] = 1,$$ where $$\left[ x \right] = $$ the greatest integer less than or equal to $$x,$$ are
A
$$x = n + \frac{1}{2},n \in N$$
B
$$x = n - \frac{1}{2},n \in N$$
C
$$x = n + \frac{1}{2},n \in Z$$
D
$$n < x < n + 1,n \in Z$$
Answer :
$$x = n + \frac{1}{2},n \in Z$$
View Solution
Discuss Question
If $$x = n \in Z,$$ the equation is $$2n - 2\left[ n \right] = 1\,\,{\text{or 2}}n - 2n = 1\,\left( {{\text{impossible}}} \right).$$
If $$x = n + k,n \in Z,0 < k < 1$$ then the equation is $$2\left( {n + k} \right) - 2\left[ {n + k} \right] = 1$$
or $$2n + 2k - 2n = 1\,\,{\text{or, }}k = \frac{1}{2}\,\,{\text{and }}n \in Z.$$
Alternate Solution
$$\eqalign{
& 2x - 2\left[ x \right] = 1 \cr
& \Rightarrow x - \left[ x \right] = \frac{1}{2} \cr
& \Rightarrow \left\{ x \right\} = \frac{1}{2},\,{\text{where}}\left\{ {} \right\}{\text{is fractional part function}} \cr
& \therefore \,x = n + \frac{1}{2},\,n \in Z \cr} $$
87.
The quadratic equation $$p(x) = 0$$ with real co-efficients has purely imaginary roots. Then the equation $$p(p(x)) = 0$$ has
A
one purely imaginary root
B
all real roots
C
two real and two purely imaginary roots
D
neither real nor purely imaginary roots
Answer :
neither real nor purely imaginary roots
View Solution
Discuss Question
Quadratic equation with real co-efficients and purely imaginary roots can be considered as
$$\eqalign{
& p\left( x \right) = {x^2} + a = 0\,\,{\text{where }}a > 0\,\,{\text{and }}a \in R \cr
& {\text{The }}p\left[ {p\left( x \right)} \right] = 0 \cr
& \Rightarrow \,\,{\left( {{x^2} + a} \right)^2} + a = 0 \cr
& \Rightarrow \,\,{x^4} + 2a{x^2} + \left( {{a^2} + a} \right) = 0 \cr
& \Rightarrow \,\,{x^2} = \frac{{ - 2a \pm \sqrt {4{a^2} - 4{a^2} - 4a} }}{2} \cr
& \Rightarrow \,\,{x^2} = - a \pm \sqrt a \,\,i \cr
& \Rightarrow \,\,x = \sqrt { - a \pm \sqrt a \,\,i} \, \cr
& = \,\,\alpha \pm i\,\beta \,\,\,\,{\text{where }}\alpha {\text{,}}\beta \ne {\text{0}} \cr
& \therefore \,\,p\left[ {p\left( x \right)} \right] = 0\,\, \cr} $$
has complex roots which are neither purely real nor purely imaginary.
88.
If $$y = 2 + \frac{1}{{4 + \frac{1}{{4 + \frac{1}{{4 + .....\infty }}}}}}\,{\text{then}}$$
A
$$y = 6$$
B
$$y = 5$$
C
$$y = \sqrt 6 $$
D
$$y = \sqrt 5 $$
Answer :
$$y = \sqrt 5 $$
View Solution
Discuss Question
$$\eqalign{
& y - 2\, = \frac{1}{{4 + \left[ {\frac{1}{{4 + \frac{1}{{4 + .....\infty }}}}} \right]}} = \frac{1}{{4 + \left( {y - 2} \right)}} = \frac{1}{{y + 2}} \cr
& \Rightarrow \,\left( {y - 2} \right)\,\left( {y + 2} \right) = 1 \cr
& \Rightarrow \,{y^2} - 4 = 1 \cr
& \Rightarrow \,{y^2} = 5 \cr
& \therefore \,y = \pm \sqrt 5 \,{\text{since}}\,y > 0 \cr
& \therefore \,y = \sqrt 5 \cr} $$
89.
If $$\lambda \ne \mu $$ and $${\lambda ^2} = 5\lambda - 3,{\mu ^2} = 5\mu - 3$$ then the equation whose roots are $$\frac{\lambda }{\mu }$$ and $$\frac{\mu }{\lambda }$$ is
A
$${x^2} - 5x + 3 = 0$$
B
$$3{x^2} + 19x + 3 = 0$$
C
$$3{x^2} - 19x + 3 = 0$$
D
$${x^2} + 5x - 3 = 0$$
Answer :
$$3{x^2} - 19x + 3 = 0$$
View Solution
Discuss Question
$$\lambda $$ and $$\mu $$ are the roots of $${x^2} = 5x - 3{\text{ or }}{x^2} - 5x + 3 = 0$$
$$\eqalign{
& \therefore \lambda + \mu = 5{\text{ and }}\lambda \mu = 3 \cr
& \frac{\lambda }{\mu } + \frac{\mu }{\lambda } = \frac{{{{\left( {\lambda + \mu } \right)}^2} - 2\lambda \mu }}{{\lambda \mu }} = \frac{{19}}{3} \cr
& \frac{\lambda }{\mu } \cdot \frac{\mu }{\lambda } = 1 \cr} $$
∴ Desired equation is $${x^2} - \frac{{19}}{3}x + 1 = 0$$
$${\text{or, }}3{x^2} - 19x + 3 = 0$$
90.
The graph of the curve $${x^2} = 3x - y - 2$$ is
A
between the lines $$x = 1$$ and $$x = \frac{3}{2}$$
B
between the lines $$x = 1$$ and $$x = 2$$
C
strictly below the line $$4y = 1$$
D
None of these
Answer :
strictly below the line $$4y = 1$$
View Solution
Discuss Question
$$y = - {x^2} + 3x - 2 = \frac{9}{4} - \left( {{x^2} - 3x + \frac{9}{4}} \right) - 2 = \frac{1}{4} - {\left( {x - \frac{3}{2}} \right)^2} \leqslant \frac{1}{4}.$$