111.
Co-efficient of $${x^{11}}$$ in the expansion of $${\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}$$ is
A
1051
B
1106
C
1113
D
1120
Answer :
1113
View Solution
Discuss Question
Co-eff. of $${x^{11}}$$ in exp. of $${\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}$$
$$ = \left( {{\text{co-eff}}{\text{. of }}{x^a}} \right) \times \left( {{\text{co-eff}}{\text{. of }}{x^b}} \right) \times \left( {{\text{co-eff}}{\text{. of }}{x^c}} \right)$$
Such that $$a + b + c = 11$$
Here $$a = 2m, b = 3n, c = 4p$$
∴ $$2m + 3n + 4p = 11$$
Case l : $$m = 0, n = 1, p = 2$$
Case ll : $$m = 1, n = 3, p = 0$$
Case III : $$m = 2, n = 1, p = 1$$
Case IV : $$m = 4, n = 1, p = 0$$
∴ Required co-eff.
$$\eqalign{
& = {\,^4}{C_0} \times {\,^7}{C_1} \times {\,^{12}}{C_2} + {\,^4}{C_1} \times {\,^7}{C_3} \times {\,^{12}}{C_0} + {\,^4}{C_2} \times {\,^7}{C_1} \times {\,^{12}}{C_1} + {\,^4}{C_4} \times {\,^7}{C_1} \times {\,^{12}}{C_0} \cr
& = 462 + 140 + 504 + 7 \cr
& = 1113 \cr} $$
112.
In the binomial expansion of $${\left( {a - b} \right)^n},n \geqslant 5,$$ the sum of the $${5^{th}}$$ and $${6^{th}}$$ terms is zero. Then $$\frac{a}{b}$$ equals
A
$$\frac{{\left( {n - 5} \right)}}{6}$$
B
$$\frac{{\left( {n - 4} \right)}}{5}$$
C
$$\frac{5}{{\left( {n - 4} \right)}}$$
D
$$\frac{6}{{\left( {n - 5} \right)}}$$
Answer :
$$\frac{{\left( {n - 4} \right)}}{5}$$
View Solution
Discuss Question
$${\left( {a - b} \right)^n},n \geqslant 5$$
In binomial expansion of above $${T_5} + {T_6} = 0$$
$$\eqalign{
& \Rightarrow \,{\,^n}{C_4}{a^{n - 4}}{b^4} + {\,^n}{C_5}{a^{n - 5}}{b^5} = 0 \cr
& \Rightarrow \,\,\frac{{^n{C_4}}}{{^n{C_5}}}.\frac{a}{b} = 1 \cr
& \Rightarrow \,\,\frac{{4 + 1}}{{n - 4}}.\frac{a}{b} = 1 \cr
& \Rightarrow \,\,\frac{a}{b} = \frac{{n - 4}}{5} \cr} $$
113.
The coefficient of $$x^{100}$$ in the expansion of $$\sum\limits_{j = 0}^{200} {{{\left( {1 + x} \right)}^j}} $$ is :
A
\[\left( {\begin{array}{*{20}{c}}
{200}\\
{100}
\end{array}} \right)\]
B
\[\left( {\begin{array}{*{20}{c}}
{201}\\
{102}
\end{array}} \right)\]
C
\[\left( {\begin{array}{*{20}{c}}
{200}\\
{101}
\end{array}} \right)\]
D
\[\left( {\begin{array}{*{20}{c}}
{201}\\
{100}
\end{array}} \right)\]
Answer :
\[\left( {\begin{array}{*{20}{c}}
{200}\\
{100}
\end{array}} \right)\]
View Solution
Discuss Question
$${\left( {1 + x} \right)^j} = 1 + {\,^j}{C_1}x + {\,^j}{C_2}{x^2} + {\,^j}{C_3}{x^3} + ..... + {\,^j}{C_{100}}{x^{100}} + ..... + {\,^j}{C_{200}}{x^{200}}$$
$$\therefore $$ Coefficient of $$x^{100}$$ in the expansion of $${\left( {1 + x} \right)^j} = {\,^j}{C_{100}}$$
Coefficient of $$x^{100}$$ in the expansion of
$$\sum\limits_{j = 0}^{200} {{{\left( {1 + x} \right)}^j}} $$ will be equal to $$\sum\limits_{j = 100}^{200} {^j{C_{100}}} $$
$$ = {\,^{100}}{C_{100}} + {\,^{101}}{C_{100}} + {\,^{102}}{C_{100}} + ..... + {\,^{200}}{C_{100}}$$
\[ = {\,^{200}}{C_{100}} = \left( {\begin{array}{*{20}{c}}
{200}\\
{100}
\end{array}} \right)\]
114.
The sum $$1 + \frac{{1 + a}}{{2!}} + \frac{{1 + a + {a^2}}}{{3!}} + .....\,\infty $$ is equal to
A
$${e^a}$$
B
$$\frac{{{e^a} - e}}{{a - 1}}$$
C
$$\left( {a - 1} \right){e^a}$$
D
$$\left( {a + 1} \right){e^a}$$
Answer :
$$\frac{{{e^a} - e}}{{a - 1}}$$
View Solution
Discuss Question
The given series is
$$\eqalign{
& 1 + \frac{{1 + a}}{{2!}} + \frac{{1 + a + {a^2}}}{{3!}} + \frac{{1 + a + {a^2} + {a^3}}}{{4!}} + .....\, \cr
& {\text{Here, }}{T_n} = \frac{{1 + a + {a^2} + {a^3} + .....\,\,{\text{to }}n{\text{ terms}}}}{{n!}} \cr
& = \frac{{1\left( {1 - {a^n}} \right)}}{{\left( {1 - a} \right)\left( {n!} \right)}} = \frac{1}{{1 - a}}\left( {\frac{{1 - {a^n}}}{{n!}}} \right) \cr
& \therefore {T_1} + {T_2} + {T_3} + .....{\text{ to }}\infty \cr
& = \frac{1}{{1 - a}}\left[ {\frac{{1 - a}}{{1!}} + \frac{{1 - {a^2}}}{{2!}} + \frac{{1 - {a^3}}}{{3!}} + .....{\text{ to }}\infty } \right] \cr
& = \frac{1}{{1 - a}}\left[ {\left( {\frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + .....{\text{ to }}\infty } \right) - \left( {\frac{a}{{1!}} + \frac{{{a^2}}}{{2!}} + \frac{{{a^3}}}{{3!}} + .....{\text{ to }}\infty } \right)} \right] \cr
& = \frac{1}{{1 - a}}\left[ {\left( {e - 1} \right) - \left( {{e^a} - 1} \right)} \right] = \frac{{e - {e^a}}}{{1 - a}} = \frac{{{e^a} - e}}{{a - 1}} \cr} $$
115.
Let $${S_1} = \sum\limits_{j = 1}^{10} {j\left( {j - 1} \right)\,{\,^{10}}{C_j},\,\,{S_2} = \sum\limits_{j = 1}^{10} {j\,{\,^{10}}{C_j}\,{\text{and }}{S_3} = \sum\limits_{j = 1}^{10} {{j^2}\,{\,^{10}}{C_j}.} } } $$
Statement - 1 : $${S_3} = 55 \times {2^9}.$$
Statement - 2 : $${S_1} = 90 \times {2^8}\,{\text{and }}{S_2} = 10 \times {2^8}.$$
A
Statement - 1 is true, Statement - 2 is true ; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false, Statement - 2 is true.
D
Statement - 1 is true, Statement - 2 is true ; Statement - 2 is a correct explanation for Statement - 1.
Answer :
Statement - 1 is true, Statement - 2 is false.
View Solution
Discuss Question
$$\eqalign{
& {S_2} = \sum\limits_{j = 1}^{10} {j\,{\,^{10}}{C_j} = \sum\limits_{j = 1}^{10} {10} \,{\,^9}{C_{j - 1}}} \cr
& = 10\left[ {^9{C_0} + {\,^9}{C_1} + {\,^9}{C_2} + ..... + {\,^9}{C_9}} \right] = 10.\,{2^9} \cr} $$
116.
$$r$$ and $$n$$ are positive integers $$r > 1, n > 2$$ and co - efficient of $${\left( {r + 2} \right)^{th}}$$ term and $$3{r^{th}}$$ term in the expansion of $${\left( {1 + x} \right)^{2n}}$$ are equal, then $$n$$ equals
A
$$3r$$
B
$$3r + 1$$
C
$$2r$$
D
$$2r + 1$$
Answer :
$$2r$$
View Solution
Discuss Question
$$\eqalign{
& {t_{r + 2}} = {\,^{2n}}{C_{r + 1}}{x^{r + 1}};{t_{3r}} = {\,^{2n}}{C_{3r - 1}}{x^{3r - 1}} \cr
& {\text{Given}}{{\text{ }}^{2n}}{C_{r + 1}} = {\,^{2n}}{C_{3r - 1}}; \cr
& \Rightarrow \,{\,^{2n}}{C_{2n - \left( {r + 1} \right)}} = {\,^{2n}}{C_{3r - 1}} \cr
& \Rightarrow \,\,2n - r - 1 = 3r - 1 \cr
& \Rightarrow \,\,2n = 4r \cr
& \Rightarrow \,\,n = 2r \cr} $$
117.
The number of integral terms in the expansion of $${\left( {\sqrt 3 + \root 8 \of 5 } \right)^{256}}$$ is
A
35
B
32
C
33
D
34
Answer :
33
View Solution
Discuss Question
$$\eqalign{
& {T_{r + 1}} = {\,^{256}}{C_r}{\left( {\sqrt 3 } \right)^{256 - r}}{\left( {^8\sqrt 5 } \right)^r} \cr
& \,\,\,\,\,\,\, = {\,^{256}}{C_r}{\left( 3 \right)^{\frac{{256 - r}}{2}}}{\left( 5 \right)^{\frac{r}{8}}} \cr} $$
Terms will be integral if $$\frac{{256 - r}}{2}\& \frac{r}{8}$$ both are +ve
integer, which is so if $$r$$ is an integral multiple of 8. As $$0 \leqslant r \leqslant 256$$
∴ $$r$$ = 0, 8, 16, 24, . . . . . , 256, total 33 values.
118.
The co-efficient of $${x^3}{y^4}z$$ in the expansion of $${\left( {1 + x + y - z} \right)^9}$$ is
A
$$2 \cdot {\,^9}{C_7} \cdot {\,^7}{C_4}$$
B
$$- 2 \cdot {\,^9}{C_2} \cdot {\,^7}{C_3}$$
C
$${\,^9}{C_7} \cdot {\,^7}{C_4}$$
D
None of these
Answer :
$$- 2 \cdot {\,^9}{C_2} \cdot {\,^7}{C_3}$$
View Solution
Discuss Question
$$\eqalign{
& {\left( {1 + x + y - z} \right)^9} = {\left\{ {\left( {1 - z} \right) + \left( {x + y} \right)} \right\}^9} \cr
& {\left( {1 + x + y - z} \right)^9} = {\,^9}{C_0}{\left( {1 - z} \right)^9} + {\,^9}{C_1}{\left( {1 - z} \right)^8}\left( {x + y} \right) + {\,^9}{C_2}{\left( {1 - z} \right)^7}{\left( {x + y} \right)^2} + ..... + {\,^9}{C_7}{\left( {1 - z} \right)^2} \cdot {\left( {x + y} \right)^7} + .....\,\,. \cr} $$
$${x^3}{y^4}$$ appears in $${\left( {x + y} \right)^7}$$ only.
∴ the required co-efficient $$ = {\,^9}{C_7}\left( { - 2} \right) \cdot {\,^7}{C_4}.$$
119.
The co-efficients of $${x^p}\,{\text{and }}{x^q}$$ in the expansion of $${\left( {1 + x} \right)^{p + q}}$$ are
A
equal
B
equal with opposite signs
C
reciprocals of each other
D
none of these
Answer :
equal
View Solution
Discuss Question
We have $${t_{p + 1}} = {\,^{p + q}}{C_p}{x^p}\,{\text{and }}{t_{q + 1}} = {\,^{p + q}}{C_q}{x^q}$$
$$^{p + q}{C_p} = {\,^{p + q}}{C_q}.\left[ {{\text{Remember}}{{\text{ }}^n}{C_r} = {\,^n}{C_{n - r}}} \right]$$
120.
$$1 \cdot {\,^n}{C_1} + 2 \cdot {\,^n}{C_2} + 3 \cdot {\,^n}{C_3} + ..... + n \cdot {\,^n}{C_n}$$ is equal to
A
$$\frac{{n\left( {n + 1} \right)}}{4} \cdot {2^n}$$
B
$${2^{n + 1}} - 3$$
C
$$n \cdot {2^{n - 1}}$$
D
None of these
Answer :
$$n \cdot {2^{n - 1}}$$
View Solution
Discuss Question
$$r \cdot {\,^n}{C_r} = n \cdot {\,^{n - 1}}{C_{r - 1}}.$$
∴ the sum $$ = n\left\{ {^{n - 1}{C_0} + {\,^{n - 1}}{C_1} + {\,^{n - 1}}{C_2} + ..... + {\,^{n - 1}}{C_{n - 1}}} \right\}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = n \cdot {2^{n - 1}}.$$