67.
Let $$a = \cos A + \cos B - \cos \left( {A + B} \right)\,$$ and $$b = 4\sin \frac{A}{2}\sin \frac{B}{2}\cos \frac{{A + B}}{2}.$$ Then $$a - b$$ is equal to
69.
If $$\omega $$ is an imaginary cube root of unity then the value of $$\sin \left\{ {\left( {{\omega ^{10}} + {\omega ^{23}}} \right)\pi - \frac{\pi }{4}} \right\}$$ is