$$\eqalign{
& \because \,\,\cos \sqrt x {\text{ is non periodic}} \cr
& \therefore \,\,{\text{cos}}\sqrt x + {\cos ^2}x\,{\text{can not be periodic}}{\text{.}} \cr} $$
33.
If $$\cos \left( {x - y} \right),\cos x$$ and $$\cos \left( {x + y} \right)$$ are in H.P. then $$\left| {\cos x \cdot \sec \frac{y}{2}} \right|$$ equals
34.
If $${\sin ^3}x \cdot \sin 3x = \sum\limits_{m = 0}^n {{c_m} \cdot \cos mx} $$ is an identity in $$x,$$ where $${c_m}'s$$ are constants then the value of $$n$$ is
As $${\cos ^2}x + {\sin ^2}x = 1,{\sin^2}x \geqslant {\sin ^4}x$$ (equality holding when $$\sin x = 0$$ )
and $${\cos^2}x \geqslant {\cos ^7}x$$ (equality holding when $$\cos x = 0$$ )
we find that $${\cos ^7}x + {\sin ^4}x = 1$$ can hold only when
$$\cos x = 0\,\,\,\,{\text{or, }}\sin x = 0\left( {x \ne \pi , - \pi } \right).$$
So, $$x = - \frac{\pi }{2},\frac{\pi }{2},0.$$