91.
In a triangle $$PQR,$$ $$\angle R = \frac{\pi }{2}.$$ If $$\tan \left( {\frac{P}{2}} \right)$$ and $$\tan \left( {\frac{Q}{2}} \right)$$ are the roots of the equation $$a{x^2} + bx + c = 0\left( {a \ne 0} \right)$$ then.
93.
If $$ABCD$$ is a cyclic quadrilateral such that $$12\tan A - 5 = 0$$ and $$5\cos B + 3 = 0$$ then the quadratic equation whose roots are $$\cos C,\tan D$$ is
The expression $$ = \frac{{\left| {\cos A + \sin A} \right| + \left| {\cos A - \sin A} \right|}}{{\left| {\cos A + \sin A} \right| - \left| {\cos A - \sin A} \right|}}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{\cos A + \sin A + \cos A - \sin A}}{{\cos A + \sin A - \left( {\cos A - \sin A} \right)}}$$ because $$ - \frac{\pi }{4} < A < \frac{\pi }{4}$$ and in this interval $$\cos A > \sin A.$$
95.
The number of values of $$x$$ in the interval $$\left[ {0,5\pi } \right]$$ satisfying the equation $$3\,{\sin ^2}x - 7\sin x + 2 = 0$$ is
98.
The maximum value of $$1 + \sin \left( {\frac{\pi }{4} + \theta } \right) + 2\cos \left( {\frac{\pi }{4} - \theta } \right)$$ for real values of $$\theta $$ is