EMMCQ.com
Maths
Physics
Chemistry
Biology
Engineering Exams
JEE Main
JEE Advanced
WBJEE
MHTCET
BITSAT
VITEEE
COMEDK
GUJCET
KEAM
Medical Exams
NEET UG
Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths
Home
Maths
Trigonometry
Trigonometric Ratio and Identities
11.
If $$0 < \beta < \alpha < \frac{\pi }{4},\cos \left( {\alpha + \beta } \right) = \frac{3}{5}$$ and $$\cos \left( {\alpha - \beta } \right) = \frac{4}{5}$$ then $$\sin 2\alpha $$ is equal to
A
1
B
0
C
2
D
None of these
Answer :
1
View Solution
Discuss Question
Use $$\sin 2\alpha = \sin \left\{ {\left( {\alpha + \beta } \right) + \left( {\alpha - \beta } \right)} \right\}$$
$$\sin 2\alpha = \sin \left( {\alpha + \beta } \right) \cdot \cos \left( {\alpha - \beta } \right) + \cos \left( {\alpha + \beta } \right) \cdot \sin \left( {\alpha - \beta } \right).$$
12.
The value of $$\tan \frac{\pi }{{16}} + 2\tan \frac{\pi }{8} + 4$$ is equal to
A
$$\cot \frac{\pi }{8}$$
B
$$\cot \frac{\pi }{16}$$
C
$$\cot \frac{\pi }{16} - 4$$
D
None of these
Answer :
$$\cot \frac{\pi }{16}$$
View Solution
Discuss Question
We know that $$\tan \theta = \cot \theta - 2\cot 2\theta .$$
∴ the expression $$ = \left( {\cot \frac{\pi }{{16}} - 2\cot \frac{\pi }{8}} \right) + 2\left( {\cot \frac{\pi }{8} - 2\cot \frac{\pi }{4}} \right) + 4 = \cot \frac{\pi }{{16}}.$$
13.
If $$a\sec \alpha - c\tan \alpha = d$$ and $$b\sec \alpha + d\tan \alpha = c$$ then
A
$${a^2} + {c^2} = {b^2} + {d^2}$$
B
$${a^2} + {d^2} = {b^2} + {c^2}$$
C
$${a^2} + {b^2} = {c^2} + {d^2}$$
D
$$ab = cd$$
Answer :
$${a^2} + {b^2} = {c^2} + {d^2}$$
View Solution
Discuss Question
$$\eqalign{ & a = d\cos \alpha + c\sin \alpha ,b = c\cos \alpha - d\sin \alpha \cr & \Rightarrow \,\,{a^2} + {b^2} = {c^2} + {d^2}. \cr} $$
14.
The difference of two angles is $${1^ \circ };\,$$ the circular measure of their sum is 1. What is the smaller angle in circular measure ?
A
$$\left[ {\frac{{180}}{\pi } - 1} \right]$$
B
$$\left[ {1 - \frac{\pi }{{180}}} \right]$$
C
$$\frac{1}{2}\left[ {1 - \frac{\pi }{{180}}} \right]$$
D
$$\frac{1}{2}\left[ {\frac{{180}}{\pi } - 1} \right]$$
Answer :
$$\frac{1}{2}\left[ {1 - \frac{\pi }{{180}}} \right]$$
View Solution
Discuss Question
Let the angles are $$\alpha $$ and $$\beta ,$$ then $$\alpha - \beta = {1^ \circ }$$
$$ \Rightarrow \alpha - \beta = \frac{\pi }{{{{180}^ \circ }}}$$ is circular measure $$\,\,\,\,.....\left( {\text{i}} \right)$$
As given, $$\alpha + \beta = 1\,\,\,\,\,.....\left( {{\text{ii}}} \right)$$
On solving Eqs. (i) and (ii), we get,
$$\alpha = \frac{1}{2}\left[ {1 + \frac{\pi }{{{{180}^ \circ }}}} \right]{\text{ and }}\beta = \frac{1}{2}\left[ {1 - \frac{\pi }{{{{180}^ \circ }}}} \right]$$
$$\beta $$ is the smaller angle.
Hence, smaller angle $$ = \frac{1}{2}\left[ {1 - \frac{\pi }{{{{180}^ \circ }}}} \right]$$
15.
The expression $${\left( {\frac{{\cos A + \cos B}}{{\sin A - \sin B}}} \right)^n} + {\left( {\frac{{\sin A + \sin B}}{{\cos A - \cos B}}} \right)^n} = $$
A
$$2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right)$$ if $$n$$ is even
B
$$0$$ if $$n$$ is even
C
$$2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right)$$ if $$n$$ is odd
D
$$3$$ if $$n$$ is odd
Answer :
$$2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right)$$ if $$n$$ is even
View Solution
Discuss Question
The given expression
$$\eqalign{ & = {\left( {\frac{{2\cos \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right)}}{{2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)}}} \right)^n} + {\left( {\frac{{2\sin \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right)}}{{2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{B - A}}{2}} \right)}}} \right)^n} \cr & = {\cot ^n}\left( {\frac{{A - B}}{2}} \right) + {\left( { - 1} \right)^n}{\cot ^n}\left( {\frac{{A - B}}{2}} \right) \cr} $$
\[ = \left\{ \begin{array}{l} 2\,{\cot ^n}\left( {\frac{{A - B}}{2}} \right),{\rm{ if }}\,n\,{\rm{ is\, even}}\\ 0,{\rm{ if }}\,n\,{\rm{ is\, odd}} \end{array} \right.\]
16.
$$\tan \theta \cdot \tan \left( {\frac{\pi }{3} + \theta } \right) \cdot \tan \left( {\frac{\pi }{3} - \theta } \right)$$ is equal to
A
$$\tan 2\theta $$
B
$$\tan 3\theta $$
C
$${\tan ^3}\theta $$
D
None of these
Answer :
$$\tan 3\theta $$
View Solution
Discuss Question
The expression $$ = \tan \theta \cdot \frac{{\sqrt 3 + \tan \theta }}{{1 - \sqrt 3 \tan \theta }} \cdot \frac{{\sqrt 3 - \tan \theta }}{{1 + \sqrt 3 \tan \theta }}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{3\tan \theta - {{\tan }^3}\theta }}{{1 - 3{{\tan }^2}\theta }} = \tan 3\theta .$$
17.
$$3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right) = $$
A
11
B
12
C
13
D
14
Answer :
13
View Solution
Discuss Question
$$\eqalign{ & 3{\left( {\sin x - \cos x} \right)^4} + 6{\left( {\sin x + \cos x} \right)^2} + 4\left( {{{\sin }^6}x + {{\cos }^6}x} \right) \cr & = 3{\left( {1 - \sin 2x} \right)^2} + 6\left( {1 + \sin 2x} \right) + 4\left[ {{{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}^3} - 3{{\sin }^2}x{{\cos }^2}x\left( {{{\sin }^2}x + {{\cos }^2}x} \right)} \right] \cr & = 3 - 6\sin 2x + 3{\sin ^2}2x + 6 + 6\sin 2x + 4\left[ {1 - \frac{3}{4}{{\sin }^2}2x} \right] \cr & = 13 + 3{\sin ^2}2x - 3{\sin ^2}2x \cr & = 13 \cr} $$
18.
$$f\left( x \right) = \left( {\sin {x^7}} \right) \cdot {e^{{x^5}\operatorname{sgn} {x^9}}}{\text{ is}}$$
A
an even function
B
an odd function
C
neither even nor odd
D
None of these
Answer :
an odd function
View Solution
Discuss Question
$$\eqalign{ & f\left( x \right) = \left( {\sin {x^7}} \right) \cdot {e^{{x^5}\operatorname{sgn} {x^9}}} \cr & \sin {x^7} \to {\text{odd,}}\operatorname{sgn} {x^9} \to {\text{odd, }}{x^5} \to {\text{odd}} \cr & \therefore {e^{{x^5}\operatorname{sgn} {x^9}}} \to {\text{even}} \cr & \therefore f\left( x \right) = {\text{odd}} \times {\text{even}} = {\text{odd}} \cr} $$
19.
If $$\alpha ,\beta ,\gamma $$ and $$\delta $$ be four angles of a cyclic quadrilateral then the value of $$\cos \alpha + \cos \beta + \cos \gamma + \cos \delta $$ is
A
$$1$$
B
$$0$$
C
$$- 1$$
D
None of these
Answer :
$$0$$
View Solution
Discuss Question
Use the fact that opposite angles are supplementary.
20.
If $$\sin \alpha + \sin \beta = a$$ and $$\cos \alpha - \cos \beta = b$$ then $$\tan \frac{{\alpha - \beta }}{2}$$ is equal to
A
$$ - \frac{a}{b}$$
B
$$ - \frac{b}{a}$$
C
$$\sqrt {{a^2} + {b^2}} $$
D
None of these
Answer :
$$ - \frac{b}{a}$$
View Solution
Discuss Question
Here, $$2\sin \frac{{\alpha + \beta }}{2} \cdot \cos \frac{{\alpha - \beta }}{2} = a,2\sin \frac{{\alpha + \beta }}{2} \cdot \sin \frac{{\beta - \alpha }}{2} = b.$$
Now, divide and get the value.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Practice More MCQ Question on
Maths
Section
Algebra
Sequences and Series
Quadratic Equation
Complex Number
Matrices and Determinants
Permutation and Combination
Binomial Theorem
Mathematical Induction
Mathematical Reasoning
Statistics and Probability
Statistics
Probability
Calculus
Sets and Relations
Function
Limits
Continuity
Differentiability and Differentiation
Application of Derivatives
Differential Equations
Indefinite Integration
Definite Integration
Application of Integration
Geometry
Straight Lines
Circle
Parabola
Ellipse
Hyperbola
Locus
3D Geometry and Vectors
Three Dimensional Geometry
Trigonometry
Trigonometric Ratio and Identities
Trignometric Equations
Properties and Solutons of Triangle
Inverse Trigonometry Function