31.
The number of values of $$x \in \left[ {0,2\pi } \right]$$ that satisfy $$\cot x - {\text{cosec}}\,x = 2\sin x$$ is
A
3
B
2
C
1
D
0
Answer :
0
View Solution
Discuss Question
$$\eqalign{
& {\text{Here, }}\left( {2\cos x + 3} \right)\left( {\cos x - 1} \right) = 0;\,{\text{but }}\left| {\cos x} \right| \leqslant 1. \cr
& {\text{So, }}\cos x = 1 \cr
& \Rightarrow \,\,x = 2n\pi \cr
& \therefore \,\,x = 0,2\pi . \cr} $$
None of these values satisfies the given equation.
32.
If the equation $${a_1} + {a_2}\cos 2x + {a_3}{\sin ^2}x = 1$$ is satisfied by every real value of $$x$$ then the number of possible values of the triplet $$\left( {{a_1},{a_2},{a_3}} \right)$$ is
A
0
B
1
C
3
D
infinite
Answer :
infinite
View Solution
Discuss Question
$$\eqalign{
& {a_1} + {a_2}\left( {2{{\cos }^2}x - 1} \right) + {a_3}\left( {1 - {{\cos }^2}x} \right) = 1 \cr
& {\text{or, }}\left( {2{a_2} - {a_3}} \right){\cos ^2}x + \left( {{a_1} - {a_2} + {a_3} - 1} \right) = 0. \cr} $$
This can hold for all $$x$$ if $$2{a_2} - {a_3} = 0\,\,{\text{and }}{a_1} - {a_2} + {a_3} - 1 = 0.$$
As there are two equations in three unknowns, the number of solutions is infinite.
33.
The number of solutions of $$\cos \theta + \sqrt 3 \sin \theta = 5,0 \leqslant \theta \leqslant 5\pi ,$$ is
A
4
B
0
C
5
D
None of these
Answer :
0
View Solution
Discuss Question
$$\left| {\frac{5}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}} \right| \leqslant 1$$ is not true. So, there is no solution.
34.
General solution of the equation $$\left( {\sqrt 3 - 1} \right)\sin \theta + \left( {\sqrt 3 + 1} \right)\cos \theta = 2{\text{ is}}$$
A
$$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$$
B
$$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{2}$$
C
$$2n\pi \pm \frac{\pi }{4} - \frac{\pi }{{12}}$$
D
None
Answer :
$$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let, }}\sqrt 3 + 1 = r\cos \alpha ,\,\,{\text{and }}\sqrt 3 - 1 = r\sin \alpha \cr
& \therefore {r^2} = {\left( {\sqrt 3 + 1} \right)^2} + {\left( {\sqrt 3 - 1} \right)^2} = 8{\text{ i}}{\text{.e}}{\text{.,}}\,\alpha = \frac{\pi }{{12}} \cr
& {\text{From the equation}},\,\,r\cos \left( {\theta - \alpha } \right) = 2 \cr
& \Rightarrow \cos \left( {\theta - \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 2 }} = \cos \left( {\frac{\pi }{4}} \right) \cr
& \therefore \theta = 2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}} \cr} $$
35.
$$2{\sin ^2}x + {\sin ^2}2x = 2, - \pi < x < \pi ,{\text{ then }}x = $$
A
$$ \pm \frac{{\pi }}{6}$$
B
$$ \pm \frac{{\pi }}{4}$$
C
$$ \pm \frac{{3\pi }}{2}$$
D
None of these
Answer :
$$ \pm \frac{{\pi }}{4}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{We have, }}\,{\text{1}} - \cos 2x + 1 - {\cos ^2}2x = 2 \cr
& {\text{or, }}\,\cos 2x\left( {\cos 2x + 1} \right) = 0 \cr
& \therefore \cos 2x = 0, - 1, \cr
& \therefore 2x = \left( {n + \frac{1}{2}} \right)\pi \,{\text{or}}\,\left( {2n + 1} \right)\pi \cr
& \Rightarrow x = \left( {2n + 1} \right)\frac{\pi }{4}\,{\text{or}}\,\left( {2n + 1} \right)\frac{\pi }{2} \cr
& {\text{Now}},{\text{put }}\,n = - 2, - 1,0,1,21 \cr
& \therefore x = \frac{{ - 3\pi }}{4},\frac{{ - \pi }}{4},\frac{\pi }{4},\frac{{5\pi }}{4}\,\,{\text{and}}\,\,\frac{{ - 3\pi }}{2},\frac{{ - \pi }}{2},\frac{\pi }{2},\frac{{3\pi }}{2},\frac{{5\pi }}{2} \cr
& {\text{Since }}\, - \pi \leqslant x \leqslant \pi ,{\text{therefore}}, \cr
& x = \pm \frac{\pi }{4}, \pm \frac{\pi }{2}, \pm \frac{{3\pi }}{4}{\text{only}}. \cr} $$
36.
The general solution of the equation $${\sin ^{50}}x - {\cos ^{50}}x = 1{\text{ is}}$$
A
$$2n\pi + \frac{\pi }{2}$$
B
$$2n\pi + \frac{\pi }{3}$$
C
$$n\pi + \frac{\pi }{2}$$
D
$$n\pi + \frac{\pi }{3}$$
Answer :
$$2n\pi + \frac{\pi }{3}$$
View Solution
Discuss Question
We have,
$$\eqalign{
& {\sin ^{50}}x - {\cos ^{50}}x = 1 \cr
& \Rightarrow {\sin ^{50}}x = 1 + {\cos ^{50}}x \cr} $$
Since, $${\sin ^{50}}x \leqslant 1$$ and $$1 + {\cos ^{50}}x \geqslant 1$$ therefore, the two sides are equal only if
$$\eqalign{
& {\sin ^{50}}x = 1 = 1 + {\cos ^{50}}x{\text{ i}}{\text{.e }}{\sin ^{50}}x = 1\,{\text{and }}{\cos ^{50}}x = 0 \cr
& \therefore x = 2n\pi + \frac{\pi }{2},n \in I. \cr} $$
37.
If $$\sin \alpha ,1$$ and $$\cos 2\alpha$$ are in G.P. then $$\alpha $$ is equal to
A
$$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{2},n \in Z$$
B
$$n\pi + {\left( { - 1} \right)^{n-1}}\frac{\pi }{2},n \in Z$$
C
$$2n\pi ,n \in Z$$
D
None of these
Answer :
$$n\pi + {\left( { - 1} \right)^{n-1}}\frac{\pi }{2},n \in Z$$
View Solution
Discuss Question
$$\eqalign{
& {\text{They are in G}}{\text{.P}}{\text{., then}} \cr
& \sin \,\alpha .\cos \,2\alpha = 1 \cr
& \sin \,\alpha \left( {1 - 2\,{{\sin }^2}\alpha } \right) = 1 \cr
& \sin \,\alpha - 2\,{\sin ^3}\alpha - 1 = 0 \cr
& \sin \,\alpha = - 1{\text{ or }}\frac{{1 - i}}{2}{\text{ or }}\frac{{1 + i}}{2} \cr
& {\text{So,}} \cr
& \alpha = n\pi + {\left( { - 1} \right)^n}\frac{{ - \pi }}{2} \cr
& \alpha = n\pi + {\left( { - 1} \right)^{n - 1}}\frac{\pi }{2} \cr} $$
38.
If $$0 \leqslant x < 2\pi ,$$ then the number of real values of $$x,$$ which satisfy the equation $$\cos x + \cos 2x + \cos 3x + \cos 4x = 0$$ is:
A
7
B
9
C
3
D
5
Answer :
7
View Solution
Discuss Question
$$\eqalign{
& \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \cr
& \Rightarrow \,\,2\cos 2x\cos x + 2\cos 3x\cos x = 0 \cr
& \Rightarrow \,\,2\cos x\left( {2\cos \frac{{5x}}{2}\cos \frac{x}{2}} \right) = 0 \cr
& \cos x = 0,\,\cos \frac{{5x}}{2} = 0,\,\,\cos \frac{x}{2} = 0 \cr
& x = \pi ,\frac{\pi }{2},\frac{{3\pi }}{2},\frac{\pi }{5},\frac{{3\pi }}{5},\frac{{7\pi }}{5},\frac{{9\pi }}{5} \cr} $$
39.
If $$\cos \theta + \cos 2\theta + \cos 3\theta = 0,$$ then the general
value of $$\theta$$ is :
A
$$\theta = 2m\pi \pm \frac{{2\pi }}{3}$$
B
$$\theta = 2m\pi \pm \frac{{\pi }}{4}$$
C
$$\theta = m\pi + {\left( { - 1} \right)^n}\frac{{2\pi }}{3}$$
D
$$\theta = m\pi + {\left( { - 1} \right)^n}\frac{{\pi }}{3}$$
Answer :
$$\theta = 2m\pi \pm \frac{{2\pi }}{3}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given, }}\cos \theta + \cos 2\theta + \cos 3\theta = 0 \cr
& \Rightarrow \left( {\cos 3\theta + \cos \theta } \right) + \cos 2\theta = 0 \cr
& \Rightarrow 2\cos 2\theta \cdot \cos \theta + \cos 2\theta = 0 \cr
& \Rightarrow \cos 2\theta \cdot \left( {2\cos \theta + 1} \right) = 0 \cr
& {\text{we have}},\cos \theta = \cos \alpha \cr
& \Rightarrow \theta = 2n\pi \pm \alpha \cr
& \therefore {\text{For general value of }}\,\theta ,\cos 2\theta = 0 \cr
& \Rightarrow \cos 2\theta = \cos \frac{\pi }{2} \cr
& \Rightarrow 2\theta = 2m\pi \pm \frac{\pi }{2} \cr
& \Rightarrow \theta = m\pi \pm \frac{\pi }{4}{\text{ or }}\,2\cos \theta + 1 = 0; \cr
& \Rightarrow \cos \theta = \frac{{ - 1}}{2} \cr
& \Rightarrow \cos \theta = \cos \frac{{2\pi }}{3} \cr
& {\text{So}},\theta = 2m\pi \pm \frac{{2\pi }}{3} \cr} $$
40.
If $$ - \pi \leqslant x \leqslant \pi , - \pi \leqslant y \leqslant \pi $$ and $$\cos x + \cos y = 2$$ then the value $$\cos \left( {x - y} \right)$$ is
A
$$- 1$$
B
$$0$$
C
$$1$$
D
None of these
Answer :
$$1$$
View Solution
Discuss Question
$$\max \cos \theta = 1.$$ So, the equation can have solution only when $$\cos x = 1,\cos y = 1$$
$$\eqalign{
& \Rightarrow \,\,x = 0,y = 0 \cr
& \Rightarrow \,\,\cos \left( {x - y} \right) = \cos {0^ \circ } = 1. \cr} $$