$$\eqalign{
& \sin \left( {\frac{{\pi x}}{{2\sqrt 3 }}} \right) = {x^2} - 2\sqrt 3 x + 4 = {\left( {x - \sqrt 3 } \right)^2} + 1 \cr
& \because {\text{RHS}} \geqslant 1\,\,{\text{so,}}\,{\text{the solution exists}} \cr
& {\text{If and only if }}x - \sqrt 3 = 0 \cr
& \Rightarrow x = \sqrt 3 \cr} $$
and then equation is obviously satisfied.
23.
Let $$n$$ be a fixed positive integer such that $$\sin \left( {\frac{\pi }{{2n}}} \right) + \cos \left( {\frac{\pi }{{2n}}} \right) = \frac{{\sqrt n }}{2},{\text{then :}}$$
24.
The sum of all the solutions of the equation $$\cos x \cdot \cos \left( {\frac{\pi }{3} + x} \right) \cdot \cos \left( {\frac{\pi }{3} - x} \right) = \frac{1}{4},x \in \left[ {0,6\pi } \right]$$ is
Given that $$\cos \left( {\alpha - \beta } \right) = 1\,{\text{and }}\cos \left( {\alpha + \beta } \right) = \frac{1}{e}$$
where $$\alpha ,\beta \in \left[ { - \pi ,\pi } \right]$$
Now, $$\cos \left( {\alpha - \beta } \right) = 1$$
$$\eqalign{
& \Rightarrow \alpha - \beta = 0 \cr
& \Rightarrow \alpha = \beta \cr} $$
Now, $$\cos \left( {\alpha + \beta } \right) = \frac{1}{e}$$
$$ \Rightarrow \,\,\cos 2\alpha = \frac{1}{e}$$
$$\because \,\,0 < \frac{1}{e} < 1\,\,{\text{and 2}}\alpha \in \left[ { - 2\pi ,2\pi } \right]$$
⇒ There will be two values of 2 $$\alpha $$ satisfying $$\cos 2\alpha = \frac{1}{e}\,\,{\text{in }}\left[ {0,2\pi } \right]$$ and two in $$\left[ { - 2\pi ,0} \right].$$
⇒ There will be four values of $$\alpha $$ in $$\left[ { - \pi ,\pi } \right]$$ and correspondingly four values of $$\beta .$$ Hence there are four sets of $$\left( {\alpha , \beta } \right).$$
27.
The number of solutions of the equation $${\sin ^5}x - {\cos ^5}x = \frac{1}{{\cos x}} - \frac{1}{{\sin x}}\left( {\sin x \ne \cos x} \right){\text{ is}}$$
$$\eqalign{
& {\text{We have, }}\cos x + \cos y = \frac{3}{2} \cr
& \Rightarrow 2\cos \left( {\frac{{x + y}}{2}} \right)\cos \left( {\frac{{x - y}}{2}} \right) = \frac{3}{2} \cr
& \Rightarrow \cos \left( {\frac{{x - y}}{2}} \right) = \frac{3}{2}\,\left( {\because x + y = \frac{{2\pi }}{3}} \right) \cr} $$
Which is not possible $$\left( {{\text{as }}\cos \theta \leqslant 1} \right)$$
Thus, the solution set is a null set.
29.
The most general values of $$x$$ for which $$\sin x + \cos x = \mathop {\min }\limits_{a\,\, \in \,\,R} \left\{ {1,{a^2} - 4a + 6} \right\}\,$$ are given by
As $$x \ne \frac{{n\pi }}{2},$$ we get $$\cos x \ne 0,1, - 1.\,{\text{So,}}\,\,{\sin ^2}x - 3\sin x + 2 = 0.$$
$$\therefore \,\,\left( {\sin x - 2} \right)\left( {\sin x - 1} \right) = 0$$
$$ \Rightarrow \,\,\sin x = 1.$$ But this does not satisfy the equation because $${0^ \circ } = 1$$ is not true.