11.
The least difference between the roots, in the first quadrant $$\left( {0 \leqslant x \leqslant \frac{\pi }{2}} \right),$$ of the equation $$4\cos x\left( {2 - 3\,{{\sin }^2}x} \right) + \left( {\cos 2x + 1} \right) = 0{\text{ is}}$$
A
$$\frac{\pi }{6}$$
B
$$\frac{\pi }{4}$$
C
$$\frac{\pi }{3}$$
D
$$\frac{\pi }{2}$$
Answer :
$$\frac{\pi }{6}$$
View Solution
Discuss Question
We have,
$$\eqalign{
& 4\cos x\left( {2 - 3\,{{\sin }^2}x} \right) + \left( {\cos 2x + 1} \right) = 0 \cr
& \Rightarrow 4\cos x\left( {3\,{{\cos }^2}x - 1} \right) + 2\,{\cos ^2}x = 0 \cr
& \Rightarrow 2\cos x\left( {6\,{{\cos }^2}x + 2} \right)\left( {2\cos x - 1} \right) = 0 \cr
& \Rightarrow 2\cos x\left( {3\cos x + 2} \right)\left( {2\cos x - 1} \right) = 0 \cr
& \Rightarrow {\text{either}}\,\,\cos x = 0{\text{ which gives }}x = \frac{\pi }{2} \cr} $$
$${\text{or }}\cos x = - \frac{2}{3}$$
Which gives no value of $$x$$ for which $$0 \leqslant x \leqslant \frac{\pi }{2}$$ or $$\cos x = \frac{1}{2},$$ which gives $$x = \frac{\pi }{3}$$
So, the required difference $$ = \frac{\pi }{2} - \frac{\pi }{3} = \frac{\pi }{6}$$
12.
The least positive nonintegral solution of $$\sin \pi \left( {{x^2} + x} \right) - \sin \pi {x^2} = 0$$ is
A
rational
B
irrational of the form $$\sqrt p $$
C
irrational of the form $$\frac{{\sqrt p - 1}}{4},$$ where $$p$$ is an odd integer
D
irrational of the form $$\frac{{\sqrt p + 1}}{4},$$ where $$p$$ is an even integer
Answer :
irrational of the form $$\frac{{\sqrt p - 1}}{4},$$ where $$p$$ is an odd integer
View Solution
Discuss Question
$$\eqalign{
& \sin \pi \left( {{x^2} + x} \right) = \sin \pi {x^2} \cr
& \Rightarrow \,\,\pi \left( {{x^2} + x} \right) = n\pi + {\left( { - 1} \right)^n}\pi {x^2} \cr
& \therefore \,\,{x^2} + x = 2m + {x^2} \cr
& \Rightarrow \,\,x = 2m \in {\Bbb Z} \cr} $$
or, $${x^2} + x = p' - {x^2},$$ where $$p'$$ is an odd integer
$$ \Rightarrow \,\,2{x^2} + x - p' = 0.$$
For nonintegral solution, $$x = \frac{{ - 1 \pm \sqrt {1 + 8p'} }}{4} = \frac{{ - 1 + \sqrt {1 + 8p'} }}{4}$$ (taking the positive value)
$$x = \frac{{\sqrt p - 1}}{4},$$ where $$p$$ is an odd integer.
13.
The number of solutions of the equation $${x^3} + {x^2} + 4x + 2\sin x = 0$$ in $$0 \leqslant x \leqslant 2\pi $$ is
A
zero
B
one
C
two
D
four
Answer :
one
View Solution
Discuss Question
Here, $${x^3} + {\left( {x + 2} \right)^2} + 2\sin x = 4.$$ Clearly, $$x = 0$$ satisfies the equation.
$$\eqalign{
& {\text{If }}0 < x \leqslant \pi ,{x^3} + {\left( {x + 2} \right)^2} + 2\sin x > 4. \cr
& {\text{If }}\pi < x \leqslant 2\pi ,{x^3} + {\left( {x + 2} \right)^2} + 2\sin x > 27 + 25 - 2. \cr} $$
So, $$x = 0$$ is the only solution.
14.
The equation $$p\cos x - q\sin x = r$$ admits of a solution for $$x$$ only if
A
$$r < \max \left\{ {p,q} \right\}$$
B
$$ - \sqrt {{p^2} + {q^2}} < r < \sqrt {{p^2} + {q^2}} $$
C
$${r^2} = {p^2} + {q^2}$$
D
None of these
Answer :
None of these
View Solution
Discuss Question
The condition for solutions is $$ - \sqrt {{p^2} + {q^2}} \leqslant r \leqslant \sqrt {{p^2} + {q^2}} .$$
15.
The equation $${\sin ^4}x - \left( {k + 2} \right){\sin ^2}x - \left( {k + 3} \right) = 0$$ possesses a solution if
A
$$k > - 3$$
B
$$k < - 2$$
C
$$ - 3 \leqslant k \leqslant - 2$$
D
$$k$$ is any positive integer
Answer :
$$ - 3 \leqslant k \leqslant - 2$$
View Solution
Discuss Question
We have,
$$\eqalign{
& {\sin ^4}x - \left( {k + 2} \right){\sin ^2}x - \left( {k + 3} \right) = 0 \cr
& \Rightarrow {\sin ^2}x = \frac{{\left( {k + 2} \right) \pm \sqrt {{{\left( {k + 2} \right)}^2} + 4\left( {k + 3} \right)} }}{2} \cr
& = \frac{{\left( {k + 2} \right) \pm \left( {k + 4} \right)}}{2} \cr
& \Rightarrow {\sin ^2}x = k + 3\,\left( {\because {{\sin }^2}x = - 1{\text{ is not possible}}} \right) \cr
& {\text{Since }}0 \leqslant {\sin ^2}x \leqslant 1, \cr
& \therefore 0 \leqslant k + 3 \leqslant 1 \cr
& {\text{or }} - 3 \leqslant k \leqslant - 2 \cr} $$
16.
If $$0 \leqslant x \leqslant 2\pi ,0 \leqslant y \leqslant 2\pi $$ and $$\sin x + \sin y = 2$$ then the value of $$x + y$$ is
A
$$\pi $$
B
$$\frac{\pi }{2}$$
C
$$3\pi $$
D
None of these
Answer :
$$\pi $$
View Solution
Discuss Question
$$\max \sin \theta = 1.$$ So, the equation can have a solution only when $$\sin x = 1,\sin y = 1$$
$$\eqalign{
& \Rightarrow \,\,x = \frac{\pi }{2},y = \frac{\pi }{2} \cr
& \therefore \,\,x + y = \pi . \cr} $$
17.
Let $$\alpha ,\beta $$ be any two positive values of $$x$$ for which $$2\cos x,\left| {\cos x} \right|$$ and $$1 - 3\,{\cos ^2}x$$ are in G.P. The minimum value of $$\left| {\alpha - \beta } \right|$$ is
A
$$\frac{\pi }{3}$$
B
$$\frac{\pi }{4}$$
C
$$\frac{\pi }{2}$$
D
None of these
Answer :
None of these
View Solution
Discuss Question
$$\eqalign{
& {\cos ^2}x = 2\cos x \cdot \left( {1 - 3{{\cos }^2}x} \right) \cr
& \Rightarrow \,\,\cos x\left\{ {6{{\cos }^2}x + \cos x - 2} \right\} = 0 \cr} $$
$$\therefore \,\,\cos x = 0,\frac{1}{2}, - \frac{2}{3}.$$ The two smallest positive values of $$x$$ are $$\frac{\pi }{3}$$ and $$\frac{\pi }{2}.$$
18.
If $$\mathop {\max }\limits_{\theta \,\, \in \,\,R} \left\{ {5\sin \theta + 3\sin \left( {\theta - \alpha } \right)} \right\} = 7$$ then the set of possible values of $$\alpha $$ is
A
$$\left\{ {\left. x \right|x = 2n\pi \pm \frac{{\pi }}{3};n \in {\Bbb Z}} \right\}$$
B
$$\left\{ {\left. x \right|x = 2n\pi \pm \frac{{2\pi }}{3};n \in {\Bbb Z}} \right\}$$
C
$$\left[ {\frac{\pi }{3},\frac{{2\pi }}{3}} \right]$$
D
None of these
Answer :
$$\left\{ {\left. x \right|x = 2n\pi \pm \frac{{\pi }}{3};n \in {\Bbb Z}} \right\}$$
View Solution
Discuss Question
$$\eqalign{
& {\max _{\theta \in R}}\left\{ {5\sin \,\theta + 3\,\sin \left( {\theta - \alpha } \right)} \right\} = 7 \cr
& \Rightarrow {\max _{\theta \in R}}\left\{ {5\sin \,\theta + 3\,\sin \,\theta \cos \,\alpha - 3\cos \theta \,\sin \,\alpha } \right\} = 7 \cr
& \Rightarrow {\max _{\theta \in R}}\left\{ {\sin \left( {5 + 3\,\cos \,\alpha } \right) + \cos \,\theta \left( { - 3\sin \,\alpha } \right)} \right\} = 7 \cr
& {\text{As }}\sqrt {{a^2} + {b^2}} \leqslant a\,\sin \,x + b\,\cos \,x \leqslant \sqrt {{a^2} + {b^2}} \cr
& \therefore \,\sqrt {{{\left( {5 + 3\,\cos \,\alpha } \right)}^2} + {{\left( { - 3\sin \,\alpha } \right)}^2}} = 7 \cr
& \Rightarrow 34 + 30\cos \,\alpha = 49 \cr
& \Rightarrow \cos \,\alpha = \frac{1}{2} \cr
& \Rightarrow \alpha = 2n\pi \pm \frac{\pi }{3} \cr} $$
19.
If $$\cos x - \sin x \geqslant 1$$ and $$0 \leqslant x \leqslant 2\pi $$ then the solution set for $$x$$ is
A
$$\left[ {0,\frac{\pi }{4}} \right] \cup \left[ {\frac{{7\pi }}{4},2\pi } \right]$$
B
$$\left[ {\frac{{3\pi }}{2},\frac{{7\pi }}{4}} \right] \cup \left\{ 0 \right\}$$
C
$$\left[ {\frac{{3\pi }}{2},2\pi } \right] \cup \left\{ 0 \right\}$$
D
None of these
Answer :
$$\left[ {\frac{{3\pi }}{2},2\pi } \right] \cup \left\{ 0 \right\}$$
View Solution
Discuss Question
$$\cos \left( {x + \frac{\pi }{4}} \right) \geqslant \frac{1}{{\sqrt 2 }}.$$ The value scheme for this is shown below.
From the figure,
$$ - \frac{\pi }{4} \leqslant x + \frac{\pi }{4} \leqslant \frac{\pi }{4}$$ and in general, $$2n\pi - \frac{\pi }{4} \leqslant x + \frac{\pi }{4} \leqslant 2n\pi + \frac{\pi }{4}$$
$$\eqalign{
& \therefore \,\,2n\pi - \frac{\pi }{2} \leqslant x \leqslant 2n\pi . \cr
& {\text{For, }}n = 0, - \frac{\pi }{2} \leqslant x \leqslant 0;\,{\text{for }}n = 1,\frac{{3\pi }}{2} \leqslant x \leqslant 2\pi . \cr} $$
20.
If $$4\,{\sin ^2}x - 8\sin x + 3 \leqslant 0,0 \leqslant x \leqslant 2\pi ,$$ then the solution set for $$x$$ is
A
$$\left[ {0,\frac{\pi }{6}} \right]$$
B
$$\left[ {0,\frac{5\pi }{6}} \right]$$
C
$$\left[ {\frac{{5\pi }}{6},2\pi } \right]$$
D
$$\left[ {\frac{\pi }{6},\frac{{5\pi }}{6}} \right]$$
Answer :
$$\left[ {\frac{\pi }{6},\frac{{5\pi }}{6}} \right]$$
View Solution
Discuss Question
Here, $$\left( {2\sin x - 1} \right)\left( {2\sin x - 3} \right) \leqslant 0.$$ But $$2\sin x - 3$$ is always negative.
$$\therefore \,\,2\sin x - 1 \geqslant 0,\,{\text{i}}{\text{.e}}{\text{.,}}\sin x \geqslant \frac{1}{2}.$$
∴ from the figure, $$\frac{\pi }{6} \leqslant x \leqslant \frac{{5\pi }}{6}.$$