41.
The general values of $$\theta $$ satisfying the equation $$2\,{\sin ^2}\theta - 3\sin \theta - 2 = 0$$ is
A
$$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{6}$$
B
$$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{2}$$
C
$$n\pi + {\left( { - 1} \right)^n}\frac{5\pi }{6}$$
D
$$n\pi + {\left( { - 1} \right)^n}\frac{7\pi }{6}$$
Answer :
$$n\pi + {\left( { - 1} \right)^n}\frac{7\pi }{6}$$
View Solution
Discuss Question
The given equation is $$2\,{\sin ^2}\theta - 3\sin \theta - 2 = 0$$
$$\eqalign{
& \Rightarrow \,\,\left( {2\sin \theta + 1} \right)\left( {\sin \theta - 2} \right) = 0 \cr
& \Rightarrow \,\,\sin \theta = - \frac{1}{2}\,\,\,\left[ {\because \,\,\sin \theta - 2 = 0\,{\text{is not possible}}} \right] \cr
& \Rightarrow \,\,\sin \theta = \sin \left( { - \frac{\pi }{6}} \right) = \sin \left( {\frac{{7\pi }}{6}} \right) \cr
& \Rightarrow \,\,\theta = n\pi + {\left( { - 1} \right)^n}\left( { - \frac{\pi }{6}} \right) \cr
& = n\pi + {\left( { - 1} \right)^n}\frac{{7\pi }}{6} \cr
& \Rightarrow \,\,{\text{Thus,}}\,\theta = n\pi + {\left( { - 1} \right)^n}\frac{{7\pi }}{6} \cr} $$
42.
The value of $$x \in \left[ { - 2\pi ,2\pi } \right]$$ such that $$\frac{{\sin x + i\cos x}}{{1 + i}},i = \sqrt { - 1} ,$$ is purely imaginary, are given by
A
$$n\pi - \frac{\pi }{4}$$
B
$$n\pi + \frac{\pi }{4}$$
C
$$n\pi$$
D
None of these
Answer :
$$n\pi - \frac{\pi }{4}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{\sin x + i\cos x}}{{1 + i}} = \frac{{\left( {1 - i} \right)\left( {\sin x + i\cos x} \right)}}{{\left( {1 + i} \right)\left( {1 - i} \right)}} \cr
& \frac{{\sin x + i\cos x}}{{1 + i}} = \frac{{\sin x + \cos x + i\left( {\cos x - \sin x} \right)}}{2},\,\,{\text{which is purely imaginary}} \cr
& \Rightarrow \,\,\sin x + \cos x = 0 \cr
& \Rightarrow \,\,\tan x = - 1 \cr
& \therefore \,\,x = n\pi - \frac{\pi }{4}. \cr} $$
43.
The most general solutions of $${2^{1 + \left| {\cos x} \right|\, + \,\,{{\cos }^2}x\, + \,{{\left| {\cos x} \right|}^3}\, + \,.....{\text{to }}\infty }} = 4$$ are given by
A
$$n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$
B
$$2n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$
C
$$2n\pi \pm \frac{2\pi }{3},n \in {\Bbb Z}$$
D
None of these
Answer :
$$n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$
View Solution
Discuss Question
$$\eqalign{
& {2^{\frac{1}{{1 - \left| {\cos x} \right|}}}} = {2^2} \cr
& \Rightarrow \,\,\frac{1}{{1 - \left| {\cos x} \right|}} = 2 \cr
& \Rightarrow \,\,\left| {\cos x} \right| = \frac{1}{2} \cr
& \Rightarrow \,\,\cos x = \pm \frac{1}{2}. \cr
& \therefore \,\,x = 2n\pi \pm \frac{\pi }{3},2n\pi \pm \left( {\pi - \frac{\pi }{3}} \right) = 2n\pi \pm \frac{\pi }{3},\left( {2n \pm 1} \right)\pi \mp \frac{\pi }{3} = n\pi \pm \frac{\pi }{3}. \cr} $$
44.
The set of values of $$x$$ for which $$\sin x \cdot {\cos ^3}x > \cos x \cdot {\sin ^3}x,0 \leqslant x \leqslant 2\pi ,$$ is
A
$$\left( {0,\pi } \right)$$
B
$$\left( {0,\frac{\pi }{4}} \right)$$
C
$$\left( {\frac{\pi }{4},\pi } \right)$$
D
None of these
Answer :
$$\left( {0,\frac{\pi }{4}} \right)$$
View Solution
Discuss Question
$$\eqalign{
& \sin x \cdot \cos x\left( {{{\cos }^2}x - {{\sin }^2}x} \right) > 0\,\,\,{\text{or, }}\frac{1}{2}\sin 2x \cdot \cos 2x > 0\,\,{\text{or, }}\sin 4x > 0 \cr
& \therefore \,\,0 < 4x < \pi . \cr} $$
45.
Let $$S = \left\{ {\theta \in \left[ { - 2\pi ,2\pi } \right]:2\,{\cos^2}\theta + 3\sin \theta = 0} \right\}.$$ Then the sum of the elements of $$S$$ is:
A
$$\frac{{13\pi }}{6}$$
B
$$\frac{{5\pi }}{3}$$
C
2
D
None of these
Answer :
2
View Solution
Discuss Question
$$\eqalign{
& 2co{s^2}\theta + 3\sin \theta = 0 \cr
& \Rightarrow \,\,\left( {2\sin \theta + 1} \right)\left( {\sin \theta - 2} \right) = 0 \cr
& \Rightarrow \,\,\sin \theta = - \frac{1}{2}\,\,{\text{or sin}}\theta = 2 \to {\text{Not possible}} \cr} $$
The required sum of all solutions in $$\left[ { - 2\pi ,2\pi } \right]{\text{is}}$$
$$\eqalign{
& {\text{ = }}\left( {\pi + \frac{\pi }{6}} \right) + \left( {2\pi - \frac{\pi }{6}} \right) + \left( { - \frac{\pi }{6}} \right) + \left( { - \pi + \frac{\pi }{6}} \right) \cr
& = 2\pi \cr} $$
46.
The number of solutions of $$\left| {\cos x} \right| = \sin x,0 \leqslant x \leqslant 4\pi ,$$ is
A
8
B
4
C
2
D
None of these
Answer :
4
View Solution
Discuss Question
$$\eqalign{
& {\text{If}}\,\cos x \geqslant 0,\,{\text{i}}{\text{.e}}{\text{., }}x \in \left[ {0,\frac{\pi }{2}} \right] \cup \left[ {\frac{{3\pi }}{2},\frac{{5\pi }}{2}} \right] \cup \left[ {\frac{{7\pi }}{2},4\pi } \right]{\text{then }}\cos x = \sin x. \cr
& \therefore \,\,\tan x = 1\,\,\,{\text{or, }}x = n\pi + \frac{\pi }{4} = \frac{\pi }{4},\frac{{5\pi }}{4},\frac{{9\pi }}{4},\frac{{13\pi }}{4}. \cr} $$
∴ if $$\cos x \geqslant 0,$$ the possible values of $$x$$ are $$\frac{\pi }{4},\frac{{9\pi }}{4}.$$
$$\eqalign{
& {\text{If }}\cos x < 0,\,{\text{i}}{\text{.e}}{\text{., }}x \in \left( {\frac{\pi }{2},\frac{{3\pi }}{2}} \right) \cup \left( {\frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right)\,{\text{then }} - \cos x = \sin x. \cr
& \therefore \,\,\tan x = - 1\,\,\,\,{\text{or, }}x = n\pi - \frac{\pi }{4} = \frac{{3\pi }}{4},\frac{{7\pi }}{4},\frac{{11\pi }}{4},\frac{{15\pi }}{4}. \cr} $$
∴ if $$\cos x < 0$$ the possible values of $$x$$ are $$\frac{{3\pi }}{4},\frac{{11\pi }}{4}.$$
47.
For what values of $$x$$ is the equation $$2\sin \theta = x + \frac{1}{x}$$ valid ?
A
$$x = \pm 1$$
B
All real values of $$x$$
C
$$ - 1 < x < 1$$
D
$$x > 1$$ and $$x < - 1$$
Answer :
$$x = \pm 1$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given}}:2\sin \theta = x + \frac{1}{x} \cr
& {\text{we know that}}\,\, - 1 \leqslant \sin \theta < 1, - 2 \leqslant 2\sin \theta < 2 \cr
& {\text{So}},\,\, - 2 \leqslant x + \frac{1}{x} < 2 \cr} $$
Thus, the given equation is valid only if $$x = \pm 1$$
48.
If $$3\,{\sin ^2}\theta + 2\,{\sin ^2}\phi = 1$$ and $$3\sin 2\theta = 2\sin 2\phi ,0 < \theta < \frac{\pi }{2}$$ and $$0 < \phi < \frac{\pi }{2},$$ then the value of $$\theta + 2\phi $$ is
A
$$\frac{\pi }{2}$$
B
$$\frac{\pi }{4}$$
C
$$0$$
D
None of these
Answer :
$$\frac{\pi }{2}$$
View Solution
Discuss Question
Here, $$3\,{\sin ^2}\theta = \cos 2\phi $$ and $$3\sin \theta \cdot \cos \theta = \sin 2\phi .$$ Squaring and adding, $$9\,{\sin^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1,\,{\text{i}}{\text{.e}}{\text{.,}}\,\,\sin \theta = \frac{1}{3}\,{\text{and }}\cos \theta = \frac{{2\sqrt 2 }}{3}.$$
$$\eqalign{
& \therefore \,\,\cos2\phi = 3 \cdot \frac{1}{9} = \frac{1}{3}\,\,{\text{and }}\sin 2\phi = \frac{{2\sqrt 2 }}{3}. \cr
& \therefore \,\,\cos \left( {\theta + 2\phi } \right) = \cos \theta \cdot \cos 2\phi - \sin \theta \cdot \sin 2\phi \cr
& \cos \left( {\theta + 2\phi } \right) = \frac{{2\sqrt 2 }}{3} \cdot \frac{1}{3} - \frac{1}{3} \cdot \frac{{2\sqrt 2 }}{3} = 0\,\,{\text{and }}\theta + 2\phi < \frac{{3\pi }}{2}. \cr} $$
49.
The number of real solutions of $$\sin {e^x} \cdot \cos {e^x} = {2^{x - 2}} + {2^{ - x - 2}}$$ is
A
zero
B
one
C
two
D
infinite
Answer :
zero
View Solution
Discuss Question
Here, $$\frac{1}{2}\sin \left( {2{e^x}} \right) = \frac{1}{4}\left( {{2^x} + {2^{ - x}}} \right) \geqslant \frac{1}{4} \cdot 2 = \frac{1}{2};\,\,{\text{so,}}\sin \left( {2{e^x}} \right) \geqslant 1.$$
But $$\sin\left( {2{e^x}} \right) > 1.$$ Therefore, $$\sin\left( {2{e^x}} \right) = 1.$$
But equality can hold when $${2^x} = {2^{ - x}} = 1,\,{\text{i}}{\text{.e}}{\text{., }}x = 0.$$ Then $$\sin\left( {2 \cdot {e^0}} \right) = 1,$$ which is not true.
50.
If $$x \in \left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right],$$ the greatest positive solution of $$1 + {\sin^4}x = {\cos ^2}3x$$ is
A
$${\pi }$$
B
$${2\pi }$$
C
$${\frac{{5\pi }}{2}}$$
D
None of these
Answer :
$${2\pi }$$
View Solution
Discuss Question
$$\eqalign{
& {\sin^2}3x + {\sin ^4}x = 0\,\,\,{\text{or, }}{\sin ^2}x\left\{ {{{\left( {3 - 4\,{{\sin }^2}x} \right)}^2} + {{\sin }^2}x} \right\} = 0 \cr
& \therefore \,\,\sin x = 0 \cr
& \Rightarrow \,\,x = n\pi . \cr} $$