111. 
      The value of $${\tan ^{ - 1}}\left( {\frac{1}{2}\left( {\tan 2A} \right) + {{\tan }^{ - 1}}\left( {\cot A} \right) + {{\tan }^{ - 1}}\left( {{{\cot }^3}A} \right)} \right)$$           is      A 
    $$0{\text{ if}}\,\,\frac{\pi }{4} < A < \frac{\pi }{2}$$  
  B 
    $$\pi {\text{ if}}\,\,0 < A < \frac{\pi }{4}$$  
   C 
    both $$\left( A \right){\text{ and }}\left( B \right)$$  
  D 
    None of these  
  
  
        Answer :   
    both $$\left( A \right){\text{ and }}\left( B \right)$$  
  
  
  
  	View Solution 
    Discuss Question  
    
		We know that $$\cot A > 1{\text{ if }}0 < A < \frac{\pi }{4}$$
   
  
   
	
  
    
      112. 
      If $$u = {\cot ^{ - 1}}\sqrt {\tan \alpha }  - {\tan ^{ - 1}}\sqrt {\tan \alpha } ,$$       then $$\tan \left( {\frac{\pi }{4} - \frac{u}{2}} \right)$$   is equal to      A 
    $$\sqrt {\tan \alpha } $$  
  B 
    $$\sqrt {\cot \alpha } $$  
   C 
    $${\tan \alpha }$$  
  D 
    $${\cot \alpha }$$  
  
  
        Answer :   
    $$\sqrt {\tan \alpha } $$  
  
  
  
  	View Solution 
    Discuss Question  
    
		$$\eqalign{
  & {\text{Let, }}\sqrt {\tan \alpha }  = \tan x,  \cr 
  & {\text{then }}u = {\cot ^{ - 1}}\left( {\tan x} \right) - {\tan ^{ - 1}}\left( {\tan x} \right) = \frac{\pi }{2} - x - x = \frac{\pi }{2} - 2x  \cr 
  &  \Rightarrow 2x = \frac{\pi }{2} - u  \cr 
  &  \Rightarrow x = \frac{\pi }{4} - \frac{u}{2}  \cr 
  &  \Rightarrow \tan x = \tan \left( {\frac{\pi }{4} - \frac{u}{2}} \right)  \cr 
  &  \Rightarrow \sqrt {\tan \alpha }  = \tan \left( {\frac{\pi }{4} - \frac{u}{2}} \right) \cr} $$    
   
  
   
	
  
    
      113. 
      If $$\sum\limits_{i = 1}^{10} {{{\cos }^{ - 1}}{x_i} = 0} $$    then $$\sum\limits_{i = 1}^{10} {{x_i}} $$  is      A 
    0  
  B 
    10  
   C 
    5  
  D 
    None of these  
  
  
        Answer :   
    10  
  
  
  
  	View Solution 
    Discuss Question  
    
		$$0 \leqslant {\cos ^{ - 1}}x \leqslant \pi .$$    Hence, from the question, $${\cos^{ - 1}}{x_i} = 0$$   for all $$i.$$
   
  
   
	
  
    
      114. 
      If $$\sin \left( {{{\sin }^{ - 1}}\frac{1}{5} + {{\cos }^{ - 1}}x} \right) = 1,$$      then what is $$x$$ equal to ?      A 
    $$0$$  
  B 
    $$1$$  
   C 
    $$\frac{4}{5}$$  
  D 
    $$\frac{1}{5}$$  
  
  
        Answer :   
    $$\frac{1}{5}$$  
  
  
  
  	View Solution 
    Discuss Question  
    
		$$\eqalign{
  & {\text{Let, }}\sin \left[ {{{\sin }^{ - 1}}\left( {\frac{1}{5}} \right) + {{\cos }^{ - 1}}x} \right] = 1  \cr 
  &  \Rightarrow {\sin ^{ - 1}}\left( {\frac{1}{5}} \right) + {\cos ^{ - 1}}x = {\sin ^{ - 1}}1  \cr 
  &  \Rightarrow {\sin ^{ - 1}}\left( {\frac{1}{5}} \right) + {\cos ^{ - 1}}x = \frac{\pi }{2}  \cr 
  &  \Rightarrow {\cos ^{ - 1}}x = \frac{\pi }{2} - {\sin ^{ - 1}}\left( {\frac{1}{5}} \right) = {\cos ^{ - 1}}\left( {\frac{1}{5}} \right)  \cr 
  &  \Rightarrow x  = \frac{1}{5} \cr} $$    
   
  
   
	
  
    
      115. 
      The range of $$f\left( x \right) = {\sin ^{ - 1}}x + {\tan ^{ - 1}}x + {\sec ^{ - 1}}x$$       is      A 
    $$\left( {\frac{\pi }{4},\frac{{3\pi }}{4}} \right)$$  
  B 
    $$\left[ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right]$$  
   C 
    $$\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}$$  
  D 
    None of these  
  
  
        Answer :   
    $$\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}$$  
  
  
  
  	View Solution 
    Discuss Question  
    
		$$f\left( x \right) = {\sin ^{ - 1}}x + {\tan ^{ - 1}}x + {\sec ^{ - 1}}x;$$       clearly, the domain of $$f\left( x \right)$$  is $$x =  \pm 1.$$   Thus the range is $$\left\{ {f\left( 1 \right),f\left( { - 1} \right)} \right\}{\text{, i}}{\text{.e}}{\text{., }}\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}.$$    
   
  
   
	
  
    
      116. 
      $${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$       then $$\sin x = $$                                A 
    $${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$  
  B 
    $${\cot ^2}\left( {\frac{\alpha }{2}} \right)$$  
   C 
    $$\tan \alpha $$  
  D 
    $${\cot}\left( {\frac{\alpha }{2}} \right)$$  
  
  
        Answer :   
    $${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$  
  
  
  
  	View Solution 
    Discuss Question  
    
		$$\eqalign{
  & {\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x  \cr 
  & {\tan ^{ - 1}}\left( {\frac{1}{{\sqrt {\cos \alpha } }}} \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x  \cr 
  &  \Rightarrow \,\,{\tan ^{ - 1}}\frac{{\frac{1}{{\sqrt {\cos \alpha } }} - \sqrt {\cos \alpha } }}{{1 + \frac{1}{{\sqrt {\cos \alpha } }}.\sqrt {\cos \alpha } }} = x  \cr 
  &  \Rightarrow \,\,{\tan ^{ - 1}}\frac{{1 - \cos \alpha }}{{2\sqrt {\cos \alpha } }} = x  \cr 
  &  \Rightarrow \,\,\tan x = \frac{{1 - \cos \alpha }}{{2\sqrt {\cos \alpha } }}\,\,{\text{or }}\cot x = \frac{{2\sqrt {\cos \alpha } }}{{1 - \cos \alpha }}  \cr 
  &  \Rightarrow \,\,\sin x = \frac{{1 - \cos \alpha }}{{1 + \cos \alpha }}  \cr 
  &  = \frac{{1 - \left( {1 - 2{{\sin }^2}\frac{\alpha }{2}} \right)}}{{1 + 2{{\cos }^2}\frac{\alpha }{2} - 1}}\,\,{\text{or }}\sin x = {\tan ^2}\frac{\alpha }{2} \cr} $$                              
   
  
   
	
  
    
      117. 
      $$\theta  = {\tan ^{ - 1}}\left( {2\,{{\tan }^2}\theta } \right) - {\tan ^{ - 1}}\left( {\frac{1}{3}\tan \theta } \right){\text{ then }}\tan \theta  = $$      A 
    $$ - 2$$  
  B 
    $$ - 1$$  
   C 
    $$\frac{2}{3}$$  
  D 
    $$2$$  
  
  
        Answer :   
    $$ - 2$$  
  
  
  
  	View Solution 
    Discuss Question  
    
		$$\eqalign{
  & \theta  = {\tan ^{ - 1}}\left[ {\frac{{2\,{{\tan }^2}\theta  - \frac{1}{3}\tan \theta }}{{1 + \frac{2}{3}{{\tan }^3}\theta }}} \right]  \cr 
  &  \Rightarrow \tan \theta  = \frac{{6\,{{\tan }^2}\theta  - \tan \theta }}{{3 + 2\,{{\tan }^3}\theta }}  \cr 
  &  \Rightarrow 1 = \frac{{6\tan \theta  - 1}}{{3 + 2\,{{\tan }^3}\theta }}{\text{ or }}\tan \theta  = 0  \cr 
  &  \Rightarrow 2\,{\tan ^3}\theta  - 6\tan \theta  + 4 = 0  \cr 
  &  \Rightarrow {\left( {\tan \theta  - 1} \right)^2}\left( {\tan \theta  + 2} \right) = 0  \cr 
  &  \Rightarrow \tan \theta  = 1;\tan \theta  =  - 2;\tan \theta  = 0. \cr} $$