51.
The value of $${\tan ^2}\left( {{{\sec }^{ - 1}}2} \right) + {\cot ^2}\left( {{\text{cose}}{{\text{c}}^{ - 1}}3} \right)$$ is
A
13
B
15
C
11
D
None of these
Answer :
11
View Solution
Discuss Question
Value $$ = {\sec ^2}\left( {\sec {\,^{ - 1}}2} \right) - 1 + {\text{cose}}{{\text{c}}^2}\left( {{\text{cosec}}{\,^{ - 1}}3} \right) - 1 = {2^2} - 1 + {3^2} - 1 = 11.$$
52.
The set of values of $$k$$ for which $${x^2} - kx + {\sin ^{ - 1}}\left( {\sin 4} \right) > 0$$ for all real $$x$$ is
A
$$\phi $$
B
$$\left( { - 2,2} \right)$$
C
$$R$$
D
$$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$$
Answer :
$$\phi $$
View Solution
Discuss Question
$$\because \frac{\pi }{2} < 4 < \frac{{3\pi }}{2},{\text{so }}{\sin ^{ - 1}}\sin 4 = {\sin ^{ - 1}}\sin \left( {\pi - 4} \right) = \pi - 4$$
The inequality becomes $${x^2} - kx + \pi - 4 > 0$$
The discriminant $$D = {k^2} - 4\left( {\pi - 4} \right) > 0$$ for all $$k,$$ that is $${x^2} - kx + \left( {\pi - 4} \right) > 0$$ can not hold for all $$x.$$
53.
The value of $$\cos \left\{ {{{\tan }^{ - 1}}\left( {\tan \frac{{15\pi }}{4}} \right)} \right\}$$ is
A
$$\frac{1}{{\sqrt 2 }}$$
B
$$ - \frac{1}{{\sqrt 2 }}$$
C
$$1$$
D
None of these
Answer :
$$\frac{1}{{\sqrt 2 }}$$
View Solution
Discuss Question
$$\eqalign{
& {\tan ^{ - 1}}\left( {\tan x} \right) = x\,\,{\text{if }} - \frac{\pi }{2} < x < \frac{\pi }{2}. \cr
& \tan \frac{{15\pi }}{4} = \tan \left( {4\pi - \frac{\pi }{4}} \right) = \tan \left( { - \frac{\pi }{4}} \right). \cr} $$
∴ the value $$ = \cos \left\{ {{{\tan }^{ - 1}}\left( {\tan \frac{{ - \pi }}{4}} \right)} \right\} = \cos \left( { - \frac{\pi }{4}} \right) = \frac{1}{{\sqrt 2 }}.$$
54.
The principal value of $${\cos ^{ - 1}}\left( { - \sin \frac{{7\pi }}{6}} \right)\,$$ is
A
$${\frac{{5\pi }}{3}}$$
B
$${\frac{{7\pi }}{6}}$$
C
$${\frac{{\pi }}{3}}$$
D
None of these
Answer :
$${\frac{{\pi }}{3}}$$
View Solution
Discuss Question
$$\eqalign{
& {\cos ^{ - 1}}\left( { - \sin \frac{{7\pi }}{6}} \right) = {\cos ^{ - 1}}\left\{ {\cos \left( {\frac{\pi }{2} + \frac{{7\pi }}{6}} \right)} \right\} \cr
& {\cos ^{ - 1}}\left( { - \sin \frac{{7\pi }}{6}} \right) = {\cos ^{ - 1}}\left( {\cos \frac{{5\pi }}{3}} \right) = {\cos ^{ - 1}}\left\{ {\cos \left( {2\pi - \frac{{5\pi }}{3}} \right)} \right\} \cr
& {\cos ^{ - 1}}\left( { - \sin \frac{{7\pi }}{6}} \right) = {\cos ^{ - 1}}\left( {\cos \frac{\pi }{3}} \right) = \frac{\pi }{3}. \cr} $$
Remember, $${\cos^{ - 1}}\left( {\cos x} \right) = x\,\,{\text{if }}0 \leqslant x \leqslant \pi .$$
55.
If $${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \pi ,$$ then $${x^4} + {y^4} + {z^4} + 4{x^2}{y^2}{z^2} = k\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right).$$ where $$k =$$
A
1
B
2
C
4
D
None of these
Answer :
2
View Solution
Discuss Question
$$\eqalign{
& {\text{We have, }}{\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \pi - {\sin ^{ - 1}}z \cr
& {\text{or, }}x\sqrt {\left( {1 - {y^2}} \right)} + y\sqrt {\left( {1 - {x^2}} \right)} = z \cr
& {\text{or, }}{x^2}\left( {1 - {y^2}} \right) = {z^2} + {y^2}\left( {1 - {x^2}} \right) - 2yz\sqrt {\left( {1 - {x^2}} \right)} \cr
& {\text{or, }}{\left( {{x^2} - {z^2} - {y^2}} \right)^2} = 4{y^2}{z^2}\left( {1 - {x^2}} \right) \cr
& {\text{or, }}{x^4} + {y^2} + {z^4} - 2{x^2}{z^2} + 2{y^2}{z^2} - 2{x^2}{y^2} + 4{x^2}{y^2}{z^2} - 4{y^2}{z^2} = 0 \cr
& {\text{or, }}{x^4} + {y^4} + {z^4} + 4{x^2}{y^2}{z^2} = 2\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right) \cr
& \therefore k = 2 \cr} $$
56.
Total number of positive integral value $$'n'$$ so that the equations $${\cos ^{ - 1}}x + {\left( {{{\sin }^{ - 1}}y} \right)^2} = \frac{{n{\pi ^2}}}{4}\,$$ and $${\left( {{{\sin }^{ - 1}}y} \right)^2} - {\cos ^{ - 1}}x = \frac{{{\pi ^2}}}{{16}}\,$$ are consistent, is equal to
A
1
B
4
C
3
D
2
Answer :
1
View Solution
Discuss Question
$$\eqalign{
& {\text{We have, }}2{\left( {{{\sin }^{ - 1}}y} \right)^2} = \frac{{4n + 1}}{{16}}{\pi ^2} \cr
& \Rightarrow 0 \leqslant \frac{{4n + 1}}{{32}}{\pi ^2} \leqslant \frac{{{\pi ^2}}}{4} \cr
& {\text{Also, }}2\left( {{{\cos }^{ - 1}}x} \right) = \frac{{4n - 1}}{{16}}{\pi ^2} \cr
& \Rightarrow - \frac{1}{4} \leqslant n \leqslant \frac{7}{4} \cr
& {\text{Also, }}2\left( {{{\cos }^{ - 1}}x} \right) = \frac{{4n - 1}}{{16}}{\pi ^2} \cr
& \Rightarrow 0 \leqslant \frac{{4n - 1}}{{32}}{\pi ^2} \leqslant \pi \cr
& \Rightarrow \frac{1}{4} \leqslant n \leqslant \frac{8}{\pi } + \frac{1}{4} \cr
& \Rightarrow n = 1 \cr} $$
57.
Let $$f\left( x \right) = {\sec ^{ - 1}}x + {\tan ^{ - 1}}x.$$ Then $$f\left( x \right)$$ is real for
A
$$x \in \left[ { - 1,1} \right]$$
B
$$x \in R$$
C
$$x \in \left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right)$$
D
None of these
Answer :
$$x \in \left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right)$$
View Solution
Discuss Question
$${\sec ^{ - 1}}x$$ is real when $$x \leqslant - 1$$ and $$x \geqslant 1.{\tan^{ - 1}}x$$ exists for all $$x \in R.$$
58.
What is $$\sin \left[ {{{\cot }^{ - 1}}\left\{ {\cos \left( {{{\tan }^{ - 1}}x} \right)} \right\}} \right]$$ where $$x > 0,$$ equal to ?
A
$$\sqrt {\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}} $$
B
$$\sqrt {\frac{{\left( {{x^2} + 2} \right)}}{{\left( {{x^2} + 1} \right)}}} $$
C
$${\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}}$$
D
$${\frac{{\left( {{x^2} + 2} \right)}}{{\left( {{x^2} + 1} \right)}}}$$
Answer :
$$\sqrt {\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}} $$
View Solution
Discuss Question
$$\eqalign{
& {\text{Let, }}\alpha = {\tan ^{ - 1}}x \cr
& \Rightarrow \tan \alpha = x \cr
& {\text{then }}\,\cos \alpha = \frac{1}{{\sqrt {1 + {{\tan }^2}\alpha } }} = \frac{1}{{\sqrt {1 + {x^2}} }} \cr
& \Rightarrow \cos \left. {\left( {{{\tan }^{ - 1}}x} \right)} \right\} = \left\{ {\frac{1}{{\sqrt {1 + {x^2}} }}} \right\} \cr
& {\text{So}},\,\,{\cot ^{ - 1}}\cos \left( {{{\tan }^{ - 1}}x} \right) = {\cot ^{ - 1}}\left\{ {\frac{1}{{\sqrt {1 + {x^2}} }}} \right\} \cr
& {\text{Let, }}{\cot ^{ - 1}}\left( {\frac{1}{{\sqrt {1 + {x^2}} }}} \right) = \beta \cr
& \Rightarrow \cot \beta = \frac{1}{{\sqrt {1 + {x^2}} }} \cr
& {\text{and }}\,\sin \beta = \frac{1}{{\sqrt {1 + {{\cot }^2}\beta } }} \cr
& = \frac{{\sqrt {1 + {x^2}} }}{{\sqrt {{x^2} + 1 + 1} }} = \sqrt {\frac{{{x^2} + 1}}{{{x^2} + 2}}} \cr
& \Rightarrow \sin \left[ {{{\cot }^{ - 1}}\left\{ {\cos \left( {{{\tan }^{ - 1}}} \right)} \right\}} \right] = \sqrt {\frac{{{x^2} + 1}}{{{x^2} + 2}}} \cr} $$
59.
If $$\alpha $$ satisfies the inequation $${x^2} - x - 2 > 0$$ then a value exists for
A
$${\sin ^{ - 1}}\alpha $$
B
$${\sec ^{ - 1}}\alpha $$
C
$${\cos ^{ - 1}}\alpha $$
D
None of these
Answer :
$${\sec ^{ - 1}}\alpha $$
View Solution
Discuss Question
$$\eqalign{
& {x^2} - x - 2 > 0 \cr
& \Rightarrow \,\,\left( {x - 2} \right)\left( {x + 1} \right) > 0 \cr} $$
$$ \Rightarrow \,\,x < - 1\,\,{\text{or, }}x > 2,$$ using sign scheme.
We know that $${\sin^{ - 1}}x$$ is defined for $$\left| x \right| \leqslant 1,{\cos ^{ - 1}}x$$ is defined for $$\left| x \right| \leqslant 1$$ and $${\sec^{ - 1}}x$$ is defined for $$\left| x \right| \geqslant 1,\,{\text{i}}{\text{.e}}{\text{., }}x \leqslant - 1\,\,{\text{or, }}x \geqslant 1.$$
60.
The equation $${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right) = 3\,{\sin ^{ - 1}}\left( x \right)$$ is true for all values of $$x$$ lying in which one of the following intervals ?
A
$$\left[ { - \frac{1}{2},\frac{1}{2}} \right]$$
B
$$\left[ {\frac{1}{2},1} \right]$$
C
$$\left[ { - 1, - \frac{1}{2}} \right]$$
D
$$\left[ { - 1,1} \right]$$
Answer :
$$\left[ { - 1,1} \right]$$
View Solution
Discuss Question
Let, $${\sin ^{ - 1}}x = \theta $$
$$ \Rightarrow x = \sin \theta $$
$$\eqalign{
& {\sin ^{ - 1}}\left( {3\sin \theta - 4\,{{\sin }^3}\theta } \right) = {\sin ^{ - 1}}\sin 3\theta \cr
& = 3\theta = 3\,{\sin ^{ - 1}}x \cr} $$
Equation $${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right) = 3\,{\sin ^{ - 1}}x$$ is true for all values of $$x$$ lying in the interval $$\left[ { - 1,1} \right].$$