11.
The equation $${\tan ^{ - 1}}\left( {1 + x} \right) + {\tan ^{ - 1}}\left( {1 - x} \right) = \frac{\pi }{2}$$ is satisfied by
A
$$x = 1$$
B
$$x = - 1$$
C
$$x = 0$$
D
$$x = \frac{1}{2}$$
Answer :
$$x = 0$$
View Solution
Discuss Question
$$\eqalign{
& {\tan ^{ - 1}}\left( {1 + x} \right) + {\tan ^{ - 1}}\left( {1 - x} \right) = \frac{\pi }{2} \cr
& {\tan ^{ - 1}}\left[ {\frac{{\left( {1 + x} \right) + \left( {1 - x} \right)}}{{1 - \left( {1 + x} \right)\left( {1 - x} \right)}}} \right] = \frac{\pi }{2} \cr
& \Rightarrow \frac{{1 + x + 1 - x}}{{1 - \left( {1 + x} \right)\left( {1 - x} \right)}} = \tan \frac{\pi }{2} \cr
& \Rightarrow \frac{2}{{1 - \left( {1 + x} \right)\left( {1 - x} \right)}} = \frac{1}{0} \cr
& \Rightarrow 1 - \left( {1 + x} \right)\left( {1 - x} \right) = 0 \cr
& \Rightarrow \left( {1 + x} \right)\left( {1 - x} \right) = 1 \cr
& 1 - {x^2} = 1 \cr
& {x^2} = 0 \cr
& x = 0 \cr} $$
12.
Let $$x \in \left( {0,1} \right).$$ The set of all $$x$$ such that $${\sin ^{ - 1}}x > {\cos ^{ - 1}}x,$$ is the interval :
A
$$\left( {\frac{1}{2},\frac{1}{{\sqrt 2 }}} \right)$$
B
$$\left( {\frac{1}{{\sqrt 2 }},1} \right)$$
C
$$\left( {0,1} \right)$$
D
$$\left( {0,\frac{{\sqrt 3 }}{2}} \right)$$
Answer :
$$\left( {\frac{1}{{\sqrt 2 }},1} \right)$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given, }}\,{\sin ^{ - 1}}x > {\cos ^{ - 1}}x{\text{ where}}\,x \in \left( {0,1} \right) \cr
& \Rightarrow {\sin ^{ - 1}}x > \frac{\pi }{2} - {\sin ^{ - 1}}x \cr
& \Rightarrow 2\,{\sin ^{ - 1}}x > \frac{\pi }{2} \cr
& \Rightarrow {\sin ^{ - 1}}x > \frac{\pi }{4} \cr
& \Rightarrow x > \sin \frac{\pi }{4} \cr
& \Rightarrow x > \frac{1}{{\sqrt 2 }} \cr} $$
Maximum value of $${\sin ^{ - 1}}x\,\,{\text{is }}\,\frac{\pi }{2}$$
So, maximum value of $$x$$ is $$1.$$ So, $$x \in \left( {\frac{1}{{\sqrt 2 }},1} \right).$$
13.
$$\tan \left\{ {\frac{1}{2}{{\sin }^{ - 1}}\frac{{2x}}{{1 + {x^2}}} + \frac{1}{2}{{\cos }^{ - 1}}\frac{{1 - {y^2}}}{{1 + {y^2}}}} \right\} = $$
A
$$\frac{{x - y}}{{1 + xy}}$$
B
$$\frac{{x + y}}{{1 - xy}}$$
C
$$\frac{{x - y}}{{x + y}}$$
D
$$\frac{{1 - xy}}{{1 + xy}}$$
Answer :
$$\frac{{x + y}}{{1 - xy}}$$
View Solution
Discuss Question
Put $$x = \tan \theta {\text{ and }}y = \tan \phi $$
14.
If $${\cos ^{ - 1}}x + {\cos ^{ - 1}}y + {\cos ^{ - 1}}z = \pi ,{\text{ then}}$$
A
$${x^2} + {y^2} + {z^2} + xyz = 0$$
B
$${x^2} + {y^2} + {z^2} + 2xyz = 0$$
C
$${x^2} + {y^2} + {z^2} + xyz = 1$$
D
$${x^2} + {y^2} + {z^2} + 2xyz = 1$$
Answer :
$${x^2} + {y^2} + {z^2} + 2xyz = 1$$
View Solution
Discuss Question
Given that,
$$\eqalign{
& {\cos ^{ - 1}}\left( x \right) + {\cos ^{ - 1}}\left( y \right) + {\cos ^{ - 1}}\left( z \right) = \pi \cr
& \Rightarrow {\cos ^{ - 1}}\left( x \right) + {\cos ^{ - 1}}\left( y \right) + {\cos ^{ - 1}}\left( z \right) = {\cos ^{ - 1}}\left( { - 1} \right) \cr
& \Rightarrow {\cos ^{ - 1}}\left( x \right) + {\cos ^{ - 1}}\left( y \right) = \pi - {\cos ^{ - 1}}\left( z \right) \cr
& \Rightarrow {\cos ^{ - 1}}\left( {xy - \sqrt {1 - {x^2}} \sqrt {1 - {y^2}} } \right) = {\cos ^{ - 1}}\left( { - z} \right) \cr
& \Rightarrow xy - \sqrt {\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)} = - z \cr
& \Rightarrow \left( {xy + z} \right) = \sqrt {\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)} \cr} $$
Squaring both sides, we get
$${x^2} + {y^2} + {z^2} + 2xyz = 1.$$
15.
The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$ is
A
$$\frac{6}{{17}}$$
B
$$\frac{7}{{16}}$$
C
$$\frac{16}{{7}}$$
D
none
Answer :
none
View Solution
Discuss Question
$$\eqalign{
& \tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right] \cr
& = \tan \left[ {{{\tan }^{ - 1}}\frac{3}{4} + {{\tan }^{ - 1}}\frac{2}{3}} \right] \cr
& = \tan \left[ {{{\tan }^{ - 1}}\left( {\frac{{\frac{3}{4} + \frac{2}{3}}}{{1 - \frac{3}{4} \times \frac{2}{3}}}} \right)} \right] \cr
& = \frac{{17}}{{12}} \times \frac{{12}}{6} \cr
& = \frac{{17}}{6} \cr} $$
16.
If $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {\frac{{\sqrt 3 }}{2}x - \frac{1}{2}\sqrt {1 - {x^2}} } \right\}, - \frac{1}{2} \leqslant x \leqslant 1,$$ then $$f\left( x \right)$$ is equal to
A
$${\sin^{ - 1}}\frac{1}{2} - {\sin ^{ - 1}}x$$
B
$${\sin ^{ - 1}}x - \frac{\pi }{6}$$
C
$${\sin ^{ - 1}}x + \frac{\pi }{6}$$
D
None of these
Answer :
$${\sin ^{ - 1}}x - \frac{\pi }{6}$$
View Solution
Discuss Question
Let $$x = \sin \theta .$$ Then $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {\sin \left( {\theta - \frac{\pi }{6}} \right)} \right\}.$$
$$\eqalign{
& - \frac{1}{2} \leqslant x \leqslant 1 \cr
& \Rightarrow \,\, - \frac{1}{2} \leqslant \sin \theta \leqslant 1 \cr
& \Rightarrow \,\, - \frac{\pi }{6} \leqslant \theta \leqslant \frac{\pi }{2}. \cr} $$
So, $$\theta - \frac{\pi }{6}$$ is in the fourth or the first quadrant. Hence, $$f\left( x \right) = \theta - \frac{\pi }{6}.$$
17.
If $$x, y, z$$ are in A.P. and $${\tan ^{ - 1}}x,{\tan ^{ - 1}}y\,\,{\text{and}}\,{\tan ^{ - 1}}z$$ are also in A.P., then
A
$$x = y = z$$
B
$$2x = 3y = 6z$$
C
$$6x = 3y = 2z$$
D
$$6x = 4y = 3z$$
Answer :
$$x = y = z$$
View Solution
Discuss Question
Since, $$x, y, z$$ are in A.P.
⇒ $$2y = x + z$$
Also, we have, $$2\,{\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( z \right)$$
$$\eqalign{
& \Rightarrow {\tan ^{ - 1}}\left( {\frac{{2y}}{{1 - {y^2}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{x + z}}{{1 - xz}}} \right) \cr
& \Rightarrow \,\,\frac{{x + z}}{{1 - {y^2}}} = \frac{{x + z}}{{1 - xz}}\,\,\left( {\because \,\,2y = x + z} \right) \cr
& \Rightarrow \,\,{y^2} = xz\,\,\,{\text{or }}\,x + z = 0 \cr
& \Rightarrow \,\,x = y = z \cr} $$
18.
The formula $$2{\sin ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right)$$ holds for
A
$$x \in \left[ {0,1} \right]$$
B
$$x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]$$
C
$$x \in \left( { - 1,0} \right)$$
D
$$x \in \left[ { - \frac{{\sqrt 3 }}{2},\frac{{\sqrt 3 }}{2}} \right]$$
Answer :
$$x \in \left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]$$
View Solution
Discuss Question
Let $$x = \sin \theta .$$ Then $${\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right) = {\sin ^{ - 1}}\left( {\sin 2\theta } \right) = 2\theta = 2{\sin ^{ - 1}}x$$ if $$ - \frac{\pi }{2} \leqslant 2\theta \leqslant \frac{\pi }{2},\,{\text{i}}{\text{.e}}{\text{.,}}\sin \left( { - \frac{\pi }{4}} \right) \leqslant \sin \theta \leqslant \sin \left( {\frac{\pi }{4}} \right),\,{\text{i}}{\text{.e}}{\text{.,}} - \frac{1}{{\sqrt 2 }} \leqslant x \leqslant \frac{1}{{\sqrt 2 }}.$$
19.
In a triangle $$ABC,$$ if $$A = {\tan ^{ - 1}}2$$ and $$B = {\tan ^{ - 1}}3,$$ then $$C$$ is equal to
A
$$\frac{\pi }{3}$$
B
$$\frac{\pi }{4}$$
C
$$\frac{\pi }{6}$$
D
$$\frac{\pi }{2}$$
Answer :
$$\frac{\pi }{4}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{We have, }}A = {\tan ^{ - 1}}2 \cr
& \Rightarrow \tan A = 2\,{\text{and}}\,B = {\tan ^{ - 1}}3 \cr
& \Rightarrow \tan B = 3. \cr
& {\text{Since, }}A,B,C{\text{ are angles of a triangle}} \cr
& \therefore A + B + C = \pi \cr
& \Rightarrow C = \pi - \left( {A + B} \right)\,\,\,.....\left( 1 \right) \cr
& {\text{Now}},A + B = {\tan ^{ - 1}}2 + {\tan ^{ - 1}}3 \cr
& = \pi + {\tan ^{ - 1}}\left( {\frac{{2 + 3}}{{1 - 2 \cdot 3}}} \right)\,\left[ {\because {{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y = \pi + {{\tan }^{ - 1}}\frac{{x + y}}{{1 - xy}}} \right] \cr
& = \pi + {\tan ^{ - 1}}\left( { - 1} \right) = \pi - {\tan ^{ - 1}}\left( { - 1} \right) \cr
& = \pi - \frac{\pi }{4} = \frac{{3\pi }}{4} \cr
& \therefore {\text{from}}\,\left( 1 \right),C = \pi - \frac{{3\pi }}{4} = \frac{\pi }{4}. \cr} $$
20.
The solution set of the equation $${\sin ^{ - 1}}x = 2\,{\tan ^{ - 1}}x{\text{ is}}$$
A
$$\left\{ { 1,2} \right\}$$
B
$$\left\{ { - 1,2} \right\}$$
C
$$\left\{ { - 1,1,0} \right\}$$
D
$$\left\{ {1,\frac{1}{2},0} \right\}$$
Answer :
$$\left\{ { - 1,1,0} \right\}$$
View Solution
Discuss Question
$$\eqalign{
& {\sin ^{ - 1}}x = 2\,{\tan ^{ - 1}}x \cr
& \Rightarrow {\sin ^{ - 1}}x = {\sin ^{ - 1}}\left\{ {\frac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right\} \cr
& \Rightarrow \frac{{2x}}{{\left( {1 + {x^2}} \right)}} = x \cr
& \Rightarrow x\left( {x + 1} \right)\left( {x - 1} \right) = 0 \cr
& \Rightarrow x = \left\{ { - 1,1,0} \right\} \cr} $$