31.
What is the degree of the differential equation $${\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^{\frac{2}{3}}} + 4 - 3\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right) + 5\left( {\frac{{dy}}{{dx}}} \right) = 0\,?$$
A
$$3$$
B
$$2$$
C
$$\frac{2}{3}$$
D
Not defined
Answer :
$$2$$
View Solution
Discuss Question
Degree of a differential equation is the power to which the highest derivative is raised when it is expressed as polynomial of derivatives.
Given equation is
$$\eqalign{
& {\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^{\frac{2}{3}}} - 3\left( {\frac{{{d^2}y}}{{d{x^2}}}} \right) + 5\left( {\frac{{dy}}{{dx}}} \right) + 4 = 0 \cr
& \Rightarrow {\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^{\frac{2}{3}}} = 3\frac{{{d^2}y}}{{d{x^2}}} - 5\frac{{dy}}{{dx}} - 4 \cr} $$
Cube on both side, $${\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^2} = {\left[ {3\frac{{{d^2}y}}{{d{x^2}}} - 5\frac{{dy}}{{dx}} - 4} \right]^3}$$
Hence, degree $$ = 2.$$
32.
The solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{y}{x}\log \,y = \frac{y}{{{x^2}}}{\left( {\log \,y} \right)^2}$$ is :
A
$$y = \log \left( {{x^2} + cx} \right)$$
B
$$\log \,y = x\left( {c{x^2} + \frac{1}{2}} \right)$$
C
$$x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right)$$
D
none of these
Answer :
$$x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right)$$
View Solution
Discuss Question
Divide the equation by $$y{\left( {\log \,y} \right)^2}$$
$$\eqalign{
& \frac{1}{{y{{\left( {\log \,y} \right)}^2}}}.\frac{{dy}}{{dx}} + \frac{1}{{\log \,y}}.\frac{1}{x} = \frac{1}{{{x^2}}} \cr
& {\text{Put }}\frac{1}{{\log \,y}} = z \Rightarrow \frac{{ - 1}}{{y{{\left( {\log \,y} \right)}^2}}}.\frac{{dy}}{{dx}} = \frac{{dz}}{{dx}} \cr
& {\text{Thus, we get, }} - \frac{{dz}}{{dx}} + \frac{1}{x}.z = \frac{1}{{{x^2}}},{\text{ linear in }}z \cr
& \Rightarrow \frac{{dz}}{{dx}} + \left( { - \frac{1}{x}} \right)z = - \frac{1}{{{x^2}}} \cr
& {\text{I}}{\text{.F}}{\text{.}} = {e^{ - f\frac{1}{x}dx}} = {e^{ - \log \,x}} = \frac{1}{x} \cr
& \therefore \,{\text{The solution is, }}z\left( {\frac{1}{x}} \right) = \int {\frac{{ - 1}}{{{x^2}}}\left( {\frac{1}{x}} \right)dx + c} \cr
& \Rightarrow \frac{1}{{\log \,y}}\left( {\frac{1}{x}} \right) = \frac{{ - {x^{ - 2}}}}{{ - 2}} + c \cr
& \Rightarrow x = \log \,y\left( {c{x^2} + \frac{1}{2}} \right) \cr} $$
33.
The order and degree of the differential equation of parabolas having vertex at the origin and focus at $$\left( {a,\,0} \right)$$ where $$a > 0,$$ are respectively :
A
$$1,\,1$$
B
$$2,\,1$$
C
$$1,\,2$$
D
$$2,\,2$$
Answer :
$$1,\,1$$
View Solution
Discuss Question
The equation of parabolas having vertex at $$\left( {0,\,0} \right)$$ & focus at $$\left( {a,\,0} \right),$$ where $$\left( {a > 0} \right)$$ is : $$\eqalign{
& {y^2} = 4ax......\left( 1 \right) \cr
& 2y.\frac{{dy}}{{dx}} = 4a\,\,\,\,\,\,\,\,\,\left[ {{\text{on differentiating}}} \right] \cr} $$
On putting the value of $$\left( {4a} \right)$$ in equation $$\left( 1 \right)$$ we get,
$$\eqalign{
& 2x.\frac{{dy}}{{dx}} - y = 0 \cr
& {\text{in order }} = 1{\text{ & degree }} = 1 \cr} $$
34.
If for the differential equation $$y' = \frac{y}{x} + \phi \left( {\frac{x}{y}} \right),$$ the general solution is $$y = \frac{x}{{\log \left| {Cx} \right|}}$$ then $$\phi \left( {\frac{x}{y}} \right)$$ is given by :
A
$$ - \frac{{{x^2}}}{{{y^2}}}$$
B
$$\frac{{{y^2}}}{{{x^2}}}$$
C
$$\frac{{{x^2}}}{{{y^2}}}$$
D
$$ - \frac{{{y^2}}}{{{x^2}}}$$
Answer :
$$ - \frac{{{y^2}}}{{{x^2}}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Putting }}v = \frac{y}{x}{\text{ so that }}x\frac{{dv}}{{dx}} + v = \frac{{dy}}{{dx}} \cr
& {\text{We have }}x\frac{{dv}}{{dx}} + v = v + \phi \left( {\frac{1}{v}} \right) \cr
& \Rightarrow \frac{{dv}}{{\phi \left( {\frac{1}{v}} \right)}} = \frac{{dx}}{x}\,; \cr
& \Rightarrow \log \left| {Cx} \right| = \int {\frac{{dv}}{{\phi \left( {\frac{1}{v}} \right)}}} \cr
& {\text{But }}y = \frac{x}{{\log \left| {Cx} \right|}}{\text{ is the general solution,}} \cr
& {\text{So, }}\frac{x}{y} = \frac{1}{v} = \log \left| {Cx} \right| = \int {\frac{{dv}}{{\phi \left( {\frac{1}{v}} \right)}}} \cr
& \Rightarrow \phi \left( {\frac{1}{v}} \right) = - \frac{1}{{{v^2}}}\,\,\,\,\left( {{\text{differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}v{\text{ both sides}}} \right) \cr
& \Rightarrow \phi \left( {\frac{x}{y}} \right) = - \frac{{{y^2}}}{{{x^2}}} \cr} $$
35.
The solution of the equation $$\frac{{dy}}{{dx}} = \sqrt {\frac{{1 - {y^2}}}{{1 - {x^2}}}} $$ is :
A
$${\sin ^{ - 1}}y - {\sin ^{ - 1}}x = c$$
B
$${\sin ^{ - 1}}y\,{\sin ^{ - 1}}x = c$$
C
$${\sin ^{ - 1}}\left( {xy} \right) = 2$$
D
none of these
Answer :
$${\sin ^{ - 1}}y - {\sin ^{ - 1}}x = c$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{dy}}{{dx}} = \sqrt {\frac{{1 - {y^2}}}{{1 - {x^2}}}} \cr
& \therefore \,\frac{{dy}}{{\sqrt {1 - {y^2}} }} = \frac{{dx}}{{\sqrt {1 - {x^2}} }} \cr
& \Rightarrow \int {\frac{{dy}}{{\sqrt {1 - {y^2}} }}} = \int {\frac{{dx}}{{\sqrt {1 - {x^2}} }}} \cr
& \Rightarrow {\sin ^{ - 1}}y = {\sin ^{ - 1}}x + c \cr
& \therefore \,{\sin ^{ - 1}}y - {\sin ^{ - 1}}x = c \cr} $$
36.
A continuously differentiable function $$\phi \left( x \right),\,x\, \in \left[ {0,\,\pi } \right] - \left\{ {\frac{\pi }{2}} \right\}$$ satisfying $$y' = 1 + {y^2},\,y\left( 0 \right) = 0 = y\left( \pi \right)$$ is :
A
$$\tan \,x$$
B
$$x\left( {x - \pi } \right)$$
C
$$\left( {x - \pi } \right)\left( {1 - {e^x}} \right)$$
D
$${\sec ^2}x$$
Answer :
$$\tan \,x$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given }}\frac{{dy}}{{dx}} = 1 + {y^2} \cr
& \Rightarrow \frac{{dy}}{{1 + {y^2}}} = dx \cr
& \Rightarrow {\tan ^{ - 1}}y = x + c \cr
& \Rightarrow y = \tan \left( {x + c} \right) \cr
& {\text{Now }}y\left( 0 \right) = 0 \Rightarrow \tan \,c = 0 \cr
& y\left( \pi \right) = 0 \Rightarrow \tan \left( {\pi + c} \right) = 0 \Rightarrow c = n\pi \cr
& \therefore \,\,y = \tan \,x \cr} $$
37.
The differential equation $$\phi \left( x \right)dy = y\left\{ {\phi '\left( x \right) - y} \right\}dx$$ is changed in the form $$df\left( {x,\,y} \right) = 0.$$ Then $$f\left( {x,\,y} \right)$$ is :
A
$$\frac{1}{2}\phi \left( x \right) + y$$
B
$$\frac{1}{y}\phi \left( x \right) - x$$
C
$$\frac{1}{y}\phi \left( x \right) + x$$
D
$$\frac{{\phi \left( x \right)}}{y}$$
Answer :
$$\frac{1}{y}\phi \left( x \right) - x$$
View Solution
Discuss Question
$$\eqalign{
& \phi \left( x \right)dy = y\phi \left( x \right)dx - {y^2}dx \cr
& {\text{or }}\frac{{y\phi '\left( x \right)dx - \phi \left( x \right)dy}}{{{y^2}}}dy - dx = 0 \cr
& {\text{or }}d\left( {\frac{{\phi \left( x \right)}}{y}} \right) - dx = 0 \cr
& {\text{or }}d\left( {\frac{{\phi \left( x \right)}}{y} - x} \right) = 0 \cr} $$
38.
The differential equation $$\left( {1 + {y^2}} \right)x\,dx - \left( {1 + {x^2}} \right)y\,dy = 0$$ represents a family of :
A
ellipses of constant eccentricity
B
ellipses of variable eccentricity
C
hyperbolas of constant eccentricity
D
hyperbolas of variable eccentricity
Answer :
hyperbolas of variable eccentricity
View Solution
Discuss Question
Given $$\frac{{x\,dx}}{{1 + {x^2}}} = \frac{{y\,dy}}{{1 + {y^2}}}$$
Integrating we get,
$$\eqalign{
& \frac{1}{2}\log \left( {1 + {x^2}} \right) = \frac{1}{2}\log \left( {1 + {y^2}} \right) + a \cr
& \Rightarrow 1 + {x^2} = c\left( {1 + {y^2}} \right),\,c = {e^{2a}} \cr
& {x^2} - c{y^2} = c - 1 \Rightarrow \frac{{{x^2}}}{{c - 1}} - \frac{{{y^2}}}{{\left( {\frac{{c - 1}}{c}} \right)}} = 1......\left( 1 \right) \cr} $$
Clearly $$c > 0{\text{ as }}c = {e^{2a}}$$
Hence, the equation $$\left( 1 \right)$$ gives a family of
hyperbolas with eccentricity
$$ = \sqrt {\frac{{c - 1 + \frac{{c - 1}}{c}}}{{c - 1}}} = \sqrt {\frac{{{c^2} - 1}}{{c - 1}}} = \sqrt {c + 1} {\text{ if }}c \ne 1$$
Thus eccentricity varies from member to member of the family as it depends on $$c.$$ If $$c = 1,$$ it is a pair of lines $${x^2} - {y^2} = 0$$
39.
The differential equation of family of curves whose tangent form an angle of $$\frac{\pi }{4}$$ with the hyperbola $$xy = {C^2}$$ is :
A
$$\frac{{dy}}{{dx}} = \frac{{{x^2} + {C^2}}}{{{x^2} - {C^2}}}$$
B
$$\frac{{dy}}{{dx}} = \frac{{{x^2} - {C^2}}}{{{x^2} + {C^2}}}$$
C
$$\frac{{dy}}{{dx}} = - \frac{{{C^2}}}{{{x^2}}}$$
D
none of these
Answer :
$$\frac{{dy}}{{dx}} = \frac{{{x^2} - {C^2}}}{{{x^2} + {C^2}}}$$
View Solution
Discuss Question
Let the slope of tangent of required family be $$\frac{{dy}}{{dx}} = {m_1}$$
Also $$y = \frac{{{C^2}}}{x}\,;$$ therefore, $$\frac{{dy}}{{dx}} = - \frac{{{C^2}}}{{{x^2}}} = {m^2}\,\,\,\left( {{\text{say}}} \right)$$
By the given condition, we have
$$\eqalign{
& \tan \frac{\pi }{4} = \frac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}} \cr
& \Rightarrow 1 + {m_1}{m_2} = {m_1} - {m_2} \cr
& \Rightarrow \frac{{dy}}{{dx}} + \frac{{{C^2}}}{{{x^2}}} = 1 - \frac{{{C^2}}}{{{x^2}}}\frac{{dy}}{{dx}} \cr
& \Rightarrow \frac{{dy}}{{dx}}\left( {1 + \frac{{{C^2}}}{{{x^2}}}} \right) = 1 - \frac{{{C^2}}}{{{x^2}}} \cr
& \Rightarrow \frac{{dy}}{{dx}} = \frac{{{x^2} - {C^2}}}{{{x^2} + {C^2}}} \cr} $$
40.
What is the solution of the differential equation $$\frac{{dx}}{{dy}} + \frac{x}{y} - {y^2} = 0\,?$$
where $$c$$ is an arbitrary constant
A
$$xy = {x^4} + c$$
B
$$xy = {y^4} + c$$
C
$$4xy = {y^4} + c$$
D
$$3xy = {y^3} + c$$
Answer :
$$4xy = {y^4} + c$$
View Solution
Discuss Question
$$\frac{{dx}}{{dy}} + \frac{x}{y} - {y^2} = 0\,;\,\frac{{dx}}{{dy}} + \frac{x}{y} = {y^2}$$
This is a linear differential equation of the form
$$\eqalign{
& \frac{{dx}}{{dy}} + {P_1}x = {Q_1}\,; \cr
& {\text{Here, }}P = \frac{1}{y}{\text{ and }}Q = {y^2} \cr
& \therefore {\text{ I}}{\text{.F}}{\text{.}} = {e^{\int {P\,dy} }} = {e^{\int {\frac{1}{y}\,dy} }} = {e^{\log \,y}} = y \cr} $$
So, required solution is
$$\eqalign{
& x.y = \int {{y^2}.y\,dy + c\,;\,xy} = \int {{y^3}dy + c} \cr
& xy = \frac{{{y^4}}}{4} + c\,;\,4xy = {y^4} + c \cr} $$