51.
If $$y = {e^{4x}} + 2{e^{ - x}}$$ satisfies the relation $$\frac{{{d^3}y}}{{d{x^3}}} + A\frac{{dy}}{{dx}} + By = 0,$$ then values of $$A$$ and $$B$$ respectively are :
A
$$ - 13,\,14$$
B
$$ - 13,\,- 12$$
C
$$ - 13,\,12$$
D
$$12,\, - 13$$
Answer :
$$ - 13,\,- 12$$
View Solution
Discuss Question
Given $$y = {e^{4x}} + 2{e^{ - x}}$$
Differentiating we get
$$\eqalign{
& \frac{{dy}}{{dx}} = 4{e^{4x}} - 2{e^{ - x}} \cr
& \Rightarrow \frac{{{d^2}y}}{{d{x^2}}} = 16{e^{4x}} + 2{e^{ - x}} \cr
& \Rightarrow \frac{{{d^3}y}}{{d{x^3}}} = 64{e^{4x}} - 2{e^{ - x}} \cr} $$
Putting these values in $$\frac{{{d^3}y}}{{d{x^3}}} + A\frac{{dy}}{{dx}} + By = 0$$
We have
$$\eqalign{
& \left( {64 + 4A + B} \right){e^{4x}} + \left( { - 2 - 2A + 2B} \right){e^{ - x}} = 0 \cr
& \Rightarrow 64 + 4A + B = 0,\,\, - 2 - 2A + 2B = 0 \cr} $$
Solving these equations, we get $$A = - 13,\,\,B = - 12$$
52.
Let $$I$$ be the purchase value of an equipment and $$V\left( t \right)$$ be the value after it has been used for $$t$$ years. The value $$V\left( t \right)$$ depreciates at a rate given by differential equation $$\frac{{dV\left( t \right)}}{{dt}} = - k\left( {T - t} \right),$$ where $$k > 0$$ is a constant and $$T$$ is the total life in years of the equipment. Then the scrap value $$V\left( T \right)$$ of the equipment is-
A
$$I - \frac{{k{T^2}}}{2}$$
B
$$I - \frac{{k{{\left( {T - t} \right)}^2}}}{2}$$
C
$${e^{ - \,kT}}$$
D
$${T^2} - \frac{1}{k}$$
Answer :
$$I - \frac{{k{T^2}}}{2}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{dV\left( t \right)}}{{dt}} = - k\left( {T - t} \right)\,\,\,\,\, \Rightarrow \int {dVt} = - k\int {\left( {T - t} \right)dt} \cr
& V\left( t \right) = \frac{{k{{\left( {T - t} \right)}^2}}}{2} + c \cr
& V\left( 0 \right) = I\,\, \Rightarrow I = \frac{{K{T^2}}}{2} + C\,\,\, \Rightarrow C = I - \frac{{K{T^2}}}{2} \cr
& \therefore \,V\left( T \right) = 0 + C = I - \frac{{K{T^2}}}{2} \cr} $$
53.
What is the solution of the differential equation $$\sin \left( {\frac{{dy}}{{dx}}} \right) - a = 0?$$
(where $$c$$ is an arbitrary constant)
A
$$y = x\,{\sin ^{ - 1}}a + c$$
B
$$x = y\,{\sin ^{ - 1}}a + c$$
C
$$y = x + x\,{\sin ^{ - 1}}a + c$$
D
$$y = {\sin ^{ - 1}}a + c$$
Answer :
$$y = x\,{\sin ^{ - 1}}a + c$$
View Solution
Discuss Question
$$\eqalign{
& \sin \left( {\frac{{dy}}{{dx}}} \right) - a = 0 \cr
& \sin \left( {\frac{{dy}}{{dx}}} \right) = a \cr
& \Rightarrow \frac{{dy}}{{dx}} = {\sin ^{ - 1}}a\,;\,dy = {\sin ^{ - 1}}a\,dx \cr} $$
Now integrating both sides,
$$\eqalign{
& \int {dy} = \int {{{\sin }^{ - 1}}a\,dx} \cr
& y = x\,{\sin ^{ - 1}}a + c \cr} $$
54.
For the primitive integral equation $$ydx + {y^2}dy = xdy \,;$$ $$x \in R,\,y > 0,\,y = y\left( x \right),\,y\left( 1 \right) = 1,$$ then $$y\left( { - 3} \right)$$ is-
A
$$3$$
B
$$2$$
C
$$1$$
D
$$5$$
Answer :
$$3$$
View Solution
Discuss Question
The given equation is
$$\eqalign{
& ydx + {y^2}dy = xdy;\,\,x \in R,\,y > 0,\,y\left( 1 \right) = 1\, \cr
& \Rightarrow \frac{{ydx - xdy}}{{{y^2}}} + dy = 0 \cr
& \Rightarrow \frac{d}{{dx}}\left( {\frac{x}{y}} \right) + dy = 0 \cr} $$
On integration, we get
$$\eqalign{
& \frac{x}{y} + y = C \cr
& y\left( 1 \right) = 1\,\,\,\, \Rightarrow 1 + 1 = C\,\, \Rightarrow C = 2 \cr
& \therefore \,\frac{x}{y} + y = 2 \cr} $$
Now to find $$y\left( { - 3} \right),$$ putting $$x=-3$$ in above equation, we get
$$\eqalign{
& - \frac{3}{y} + y = 2 \cr
& \Rightarrow {y^2} - 2y - 3 = 0 \cr
& \Rightarrow y = 3,\,\, - 1 \cr} $$
But given that $$y>0,$$
$$\therefore y = 3$$
55.
Solution of the differential equation $$\cos \,x\,dy = y\left( {\sin \,x - y} \right)dx,\,\,0 < x < \frac{\pi }{2}$$ is-
A
$$y\,\sec \,x = \tan \,x + c$$
B
$$y\,\tan \,x = \sec \,x + c$$
C
$$\tan \,x = \left( {\sec \,x + c} \right)y$$
D
$$\sec \,x = \left( {\tan \,x + c} \right)y$$
Answer :
$$\sec \,x = \left( {\tan \,x + c} \right)y$$
View Solution
Discuss Question
$$\eqalign{
& \cos \,x\,dy = y\left( {\sin \,x - y} \right)dx \cr
& \frac{{dy}}{{dx}} = y\,\tan \,x - {y^2}\,\sec \,x \cr
& \frac{1}{{{y^2}}}\frac{{dy}}{{dx}} - \frac{1}{y}\tan \,x = - \sec \,x\,.....(i) \cr
& Let\,\,\frac{1}{y} = t\,\,\,\,\, \Rightarrow - \frac{1}{{{y^2}}}\frac{{dy}}{{dx}} = \frac{{dt}}{{dx}} \cr
& {\text{From equation }}(i) \cr
& - \frac{{dt}}{{dx}} - t\,\tan \,x = - \sec \,x \cr
& \Rightarrow \frac{{dt}}{{dx}} + \left( {\tan \,x} \right)t = \sec \,x \cr
& {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\tan \,x\,dx} }} = {\left( e \right)^{\log \,\left| {\sec \,x} \right|}}\sec \,x \cr
& {\text{Solution:}} \cr
& t\left( {{\text{I}}{\text{.F}}{\text{.}}} \right) = \int {\left( {{\text{I}}{\text{.F}}{\text{.}}} \right)\sec \,x\,dx\, \Rightarrow \frac{1}{y}\sec \,x = \tan \,x + c} \cr} $$
56.
The degree of the differential equation $$\sqrt {1 + {{\left( {\frac{{dy}}{{dx}}} \right)}^2}} = {x^2}$$ is :
A
one
B
two
C
half
D
four
Answer :
two
View Solution
Discuss Question
On removal of the radical, $$1 + {\left( {\frac{{dy}}{{dx}}} \right)^2} = {x^4}.$$ So, degree $$=2.$$
57.
Let $$y - y\left( x \right)$$ be the solution of the differential equation $$\sin \,x\frac{{dy}}{{dx}} + y\,\cos \,x = 4x,\,x \in \left( {0,\,\,\pi } \right).$$ If $$y\left( {\frac{\pi }{2}} \right) = 0,$$ then $$y\left( {\frac{\pi }{6}} \right)$$ is equal to :
A
$$\frac{{ - 8}}{{9\sqrt 3 }}{\pi ^2}$$
B
$$ - \frac{8}{9}{\pi ^2}$$
C
$$ - \frac{4}{9}{\pi ^2}$$
D
$$\frac{4}{{9\sqrt 3 }}{\pi ^2}$$
Answer :
$$ - \frac{8}{9}{\pi ^2}$$
View Solution
Discuss Question
Consider the given differential equation the
$$\eqalign{
& \sin \,xdy + y\,\cos \,xdx = 4xdx \cr
& \Rightarrow d\left( {y.\sin \,x} \right) = 4xdx \cr} $$
Integrate both sides
$$\eqalign{
& \Rightarrow y.\sin \,x = 2{x^2} + C\,.....(1) \cr
& \Rightarrow y\left( x \right) = \frac{{2{x^2}}}{{\sin \,x}} + c\,.....(2) \cr} $$
$$\because $$ equation (2) passes through $$\left( {\frac{\pi }{2},\,\,0} \right)$$
$$ \Rightarrow 0 = \frac{{{\pi ^2}}}{2} + C\,\,\, \Rightarrow C = - \frac{{{\pi ^2}}}{2}$$
Now, put the value of $$C$$ in (1)
Then, $$y\,\sin \,x = 2{x^2} - \frac{{{\pi ^2}}}{2}$$ is the solution $$\therefore y\left( {\frac{\pi }{6}} \right) = \left( {2.\frac{{{\pi ^2}}}{{36}} - \frac{{{\pi ^2}}}{2}} \right)2 = - \frac{{8{\pi ^2}}}{9}$$
58.
The order and degree of the differential equation of the family of circles touching the $$x$$-axis at the origin, are respectively :
A
$$1,\,1$$
B
$$1,\,2$$
C
$$2,\,1$$
D
$$2,\,2$$
Answer :
$$1,\,1$$
View Solution
Discuss Question
The equation of the family is
$$\eqalign{
& {\left( {x - c} \right)^2} + {y^2} = {c^2}{\text{ or }}{x^2} + {y^2} - 2cx = 0 \cr
& {\text{or }}\frac{{{x^2} + {y^2}}}{x} = 2c\,\,\,\,\,\,\,\,\, \Rightarrow \frac{{\left( {2x + 2y\frac{{dy}}{{dx}}} \right)x - \left( {{x^2} + {y^2}} \right).1}}{{{x^2}}} = 0 \cr} $$
So, degree $$=1$$ order $$=1$$
59.
The solution of the differential equation $$3{e^x}\tan \,y\,dx + \left( {1 - {e^x}} \right){\sec ^2}y\,dy = 0$$ is :
A
$${e^x}\tan \,y = C$$
B
$$C{e^x} = {\left( {1 - \tan \,y} \right)^3}$$
C
$$C\,\tan \,y = {\left( {1 - {e^x}} \right)^2}$$
D
$$\tan \,y = C{\left( {1 - {e^x}} \right)^3}$$
Answer :
$$\tan \,y = C{\left( {1 - {e^x}} \right)^3}$$
View Solution
Discuss Question
$$\eqalign{
& 3{e^x}\tan \,y\,dx + \left( {1 - {e^x}} \right){\sec ^2}y\,dy = 0 \cr
& \Rightarrow \frac{{3{e^x}}}{{1 - {e^x}}}dx + \frac{{{{\sec }^2}y}}{{\tan \,y}}dy = 0\,\,{\text{Integrating we get}} \cr
& \int {\frac{{3{e^x}}}{{1 - {e^x}}}dx} + \int {\frac{{{{\sec }^2}y}}{{\tan \,y}}dy} = D \cr
& \Rightarrow - 3\ell n\left( {1 - {e^x}} \right) + \ell n\,\tan \,y = D \cr
& \Rightarrow - \ell n{\left( {1 - {e^x}} \right)^3} + \ell n\,\tan \,y = D \cr
& \Rightarrow \ell n\frac{{\tan \,y}}{{{{\left( {1 - {e^x}} \right)}^3}}} = \ell n\,C \cr
& \Rightarrow \tan \,y = C{\left( {1 - {e^x}} \right)^3} \cr} $$
60.
If $$y - y\left( x \right)$$ is the solution of the differential equation, $$x\frac{{dy}}{{dx}} + 2y = \,{x^2}$$ satisfying $$y\left( a \right) = 1,$$ then $$y\left( {\frac{1}{2}} \right)$$ is equal to:
A
$$\frac{7}{{64}}$$
B
$$\frac{1}{{4}}$$
C
$$\frac{49}{{16}}$$
D
$$\frac{13}{{16}}$$
Answer :
$$\frac{49}{{16}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Since, }}x\frac{{dy}}{{dx}} + 2y = \,{x^2} \cr
& \Rightarrow \frac{{dy}}{{dx}} + \frac{2}{x}y = x \cr
& {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {\frac{2}{x}\,dx} }} = {e^{2\,\ln \,x}} = {e^{\ln \,{x^2}}} = {x^2} \cr} $$
Solution of differential equation is:
$$\eqalign{
& y\,.\,\% \,{x^2} = \int {x.{x^2}dx} \cr
& y\,.\,\% \,{x^2} = \frac{{{x^4}}}{4} + C.....\left( 1 \right) \cr
& \because y\left( a \right) = 1 \cr
& \therefore C = \frac{3}{4} \cr} $$
Then, from equation (1)
$$\eqalign{
& y.\,\% \,{x^2} = \frac{{{x^4}}}{4} + \frac{3}{4} \cr
& \therefore y = \frac{{{x^2}}}{4} + \frac{3}{{4{x^2}}} \cr
& \therefore y\left( {\frac{1}{2}} \right) = \frac{1}{{16}} + 3 = \frac{{49}}{{16}} \cr} $$