61.
The general solution of a differential equation is $$y = a{e^{bx + c}}$$
where $$a,\,b,\,c$$ are arbitrary constants. The order of the differential equation is :
A
3
B
2
C
1
D
none of these
Answer :
2
View Solution
Discuss Question
$$y = a{e^{bx + c}} = a{e^c}.{e^{bx}} = k{e^{bx}}.$$
So, there are two arbitrary constants. Hence, the order of the differential equation will be 2.
62.
The differential equation $$\frac{{dy}}{{dx}} = \frac{{\sqrt {1 - {y^2}} }}{y}$$ determines a family of circles with-
A
variable radii and a fixed centre at $$\left( {0,\, 1} \right)$$
B
variable radii and a fixed centre at $$\left( {0,\, - 1} \right)$$
C
fixed radius 1 and variable centres along the $$x$$-axis.
D
fixed radius 1 and variable centres along the $$y$$-axis.
Answer :
fixed radius 1 and variable centres along the $$x$$-axis.
View Solution
Discuss Question
$$\eqalign{
& \frac{{dy}}{{dx}} = \frac{{\sqrt {1 - {y^2}} }}{y} \cr
& \Rightarrow \frac{{ - 2y}}{{\sqrt {1 - {y^2}} }}dy + 2dx = 0 \cr
& \Rightarrow 2\sqrt {1 - {y^2}} + 2x = 2c \cr
& \Rightarrow \sqrt {1 - {y^2}} + x = c \cr
& \Rightarrow {\left( {x - c} \right)^2} + {y^2} = 1 \cr} $$
which is a circle of fixed radius 1 and variable centre $$\left( {c,\,0} \right)$$ lying on $$x$$-axis.
63.
The differential equation $$\frac{{{d^2}y}}{{d{x^2}}} + x.\frac{{dy}}{{dx}} + \sin \,y + {x^2} = 0$$ is of the following type :
A
Linear
B
Homogeneous
C
Order two
D
Degree two
Answer :
Order two
View Solution
Discuss Question
Given differential equation,
$$\frac{{{d^2}y}}{{d{x^2}}} + x.\frac{{dy}}{{dx}} + \sin \,y + {x^2} = 0$$
The order of highest derivative $$ = 2$$ and degree $$ = 1.$$
64.
The solution of $$\frac{{dy}}{{dx}} = \left| x \right|$$ is :
(Where $$c$$ is an arbitrary constant)
A
$$y = \frac{{x\left| x \right|}}{2} + c$$
B
$$y = \frac{{\left| x \right|}}{2} + c$$
C
$$y = \frac{{{x^2}}}{2} + c$$
D
$$y = \frac{{{x^3}}}{2} + c$$
Answer :
$$y = \frac{{x\left| x \right|}}{2} + c$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{dy}}{{dx}} = \left| x \right| \cr
& \frac{{dy}}{{dx}} = x{\text{ for }}x \geqslant 0\,;\frac{{dy}}{{dx}} = - x{\text{ for }}x < 0\,;\,\int {dy = } \int {x\,dx} \cr
& y = \frac{{{x^2}}}{2} + {C_1}......\left( {{\text{i}}} \right) \cr
& \int {dy = } - 1\,x\,dx \cr
& y = - \frac{{{x^2}}}{2} + {C_1}......\left( {{\text{ii}}} \right) \cr
& {\text{From }}\left( {\text{i}} \right){\text{ and }}\left( {{\text{ii}}} \right) \cr
& y = \frac{{x\left| x \right|}}{2} + C \cr} $$
65.
The curve satisfying the equation $$\frac{{dy}}{{dx}} = \frac{{y\left( {x + {y^3}} \right)}}{{x\left( {{y^3} - x} \right)}}$$ and passing through the point $$\left( {4,\, - 2} \right)$$: is :
A
$${y^2} = - 2x$$
B
$$y = - 2x$$
C
$${y^3} = - 2x$$
D
none of these
Answer :
$${y^3} = - 2x$$
View Solution
Discuss Question
$$\eqalign{
& \left( {x{y^3} - {x^2}} \right)dy - \left( {xy + {y^4}} \right)dx = 0 \cr
& \Rightarrow {y^3}\left( {x\,dy - y\,dx} \right) - x\left( {x\,dy + y\,dx} \right) = 0 \cr
& \Rightarrow {x^2}{y^3}\frac{{\left( {x\,dy - y\,dx} \right)}}{{{x^2}}} - x\left( {x\,dy + y\,dx} \right) = 0 \cr
& \Rightarrow {x^2}{y^3}d\left( {\frac{y}{x}} \right) - xd\left( {xy} \right) = 0 \cr} $$
Dividing by $${x^3}{y^2},$$ we get $$\frac{y}{x}d\left( {\frac{y}{x}} \right) - \frac{{d\left( {xy} \right)}}{{{x^2}{y^2}}} = 0$$
Now, integrating $$\frac{1}{2}{\left( {\frac{y}{x}} \right)^2} + \frac{1}{{xy}} = c$$
It passes through the point $$\left( {4,\, - 2} \right)$$
$$\eqalign{
& \Rightarrow \frac{1}{8} - \frac{1}{8} = c \Rightarrow c = 0 \cr
& \therefore \,{y^3} = - 2x \cr} $$
66.
If $$y = y\left( x \right)$$ and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$ equals-
A
$$\frac{1}{3}$$
B
$$\frac{2}{3}$$
C
$$ - \frac{1}{3}$$
D
$$1$$
Answer :
$$\frac{1}{3}$$
View Solution
Discuss Question
$$\eqalign{
& \frac{{dy}}{{dx}}\left( {\frac{{2 + \sin \,x}}{{1 + y}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1 \cr
& \Rightarrow \frac{{dy}}{{\left( {1 + y} \right)}} = \frac{{ - \cos \,x}}{{2 + \sin \,x}}dx \cr} $$
Integrating both sides
$$ \Rightarrow \ln \left( {1 + y} \right) = - \ln \left( {2 + \sin \,x} \right) + C$$ Put $$x=0$$ and $$y=1$$
$$ \Rightarrow \ln \left( 2 \right) = - \ln 2 + C \Rightarrow C = \ln 4$$ Put $$x = \frac{\pi }{2}$$
$$ \Rightarrow \ln \left( {1 + y} \right) = - \ln 3 + \ln 4 = \ln \frac{4}{3} \Rightarrow y = \frac{1}{3}$$
67.
The solution of $$\frac{{dy}}{{dx}} = \sqrt {1 - {x^2} - {y^2} + {x^2}{y^2}} $$ is :
(where $$c$$ is an arbitrary constant)
A
$${\sin ^{ - 1}}y = {\sin ^{ - 1}}x + c$$
B
$$2\,{\sin ^{ - 1}}y = \sqrt {1 - {x^2}} + {\sin ^{ - 1}}x + c$$
C
$$2\,{\sin ^{ - 1}}y = x\sqrt {1 - {x^2}} + {\sin ^{ - 1}}x + c$$
D
$$2\,{\sin ^{ - 1}}y = x\sqrt {1 - {x^2}} + {\cos ^{ - 1}}x + c$$
Answer :
$$2\,{\sin ^{ - 1}}y = x\sqrt {1 - {x^2}} + {\sin ^{ - 1}}x + c$$
View Solution
Discuss Question
$$\eqalign{
& \because \,\frac{{dy}}{{dx}} = \sqrt {1 - {x^2} - {y^2} + {x^2}{y^2}} \cr
& \frac{{dy}}{{dx}} = \sqrt {\left( {1 - {x^2}} \right)\left( {1 - {y^2}} \right)} \,; \cr
& \Rightarrow \frac{{dy}}{{\sqrt {1 - {y^2}} }} = \sqrt {1 - {x^2}} .dx \cr
& \Rightarrow \int {\frac{{dy}}{{\sqrt {1 - {y^2}} }}} = \int {\sqrt {1 - {x^2}} .dx} \,\,\,\left[ {{\text{integrating }}\frac{b}{s}} \right] \cr
& \Rightarrow {\sin ^{ - 1}}\left( {\frac{y}{1}} \right) = \frac{x}{2}\sqrt {1 - {x^2}} + \frac{1}{2}{\sin ^{ - 1}}\left( {\frac{x}{1}} \right) + c \cr
& \Rightarrow 2\,{\sin ^{ - 1}}y = x\sqrt {1 - {x^2}} + {\sin ^{ - 1}}x + c \cr} $$
68.
What is the solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{y}{{\left( {x + 2{y^3}} \right)}}\,?$$
A
$$y\left( {1 - xy} \right) = cx$$
B
$${y^3} - x = cy$$
C
$$x\left( {1 - xy} \right) = cy$$
D
$$x\left( {1 + xy} \right) = cy$$
Answer :
$${y^3} - x = cy$$
View Solution
Discuss Question
$$\eqalign{
& {y^3} - x = cy \cr
& \Rightarrow 3{y^2}\frac{{dy}}{{dx}} - 1 = c\frac{{dy}}{{dx}} \cr
& \Rightarrow \frac{{dy}}{{dx}}\left( {3{y^2} - c} \right) = 1 \cr
& \Rightarrow \frac{{dy}}{{dx}}\left( {3{y^2} - \frac{{{y^3} - x}}{y}} \right) = 1 \cr
& \Rightarrow \frac{{dy}}{{dx}}\left( {\frac{{3{y^3} - {y^3} + x}}{y}} \right) = 1 \cr
& \Rightarrow \frac{{dy}}{{dx}} = \frac{y}{{x + 2{y^3}}} \cr} $$
69.
Consider the following statements in respect of the differential equation $$\frac{{{d^2}y}}{{d{x^2}}} + \cos \left( {\frac{{dy}}{{dx}}} \right) = 0$$
1. The degree of the differential equation is not defined.
2. The order of the differential equation is 2.
Which of the above statements is/are correct ?
A
1 only
B
2 only
C
Both 1 and 2
D
Neither 1 nor 2
Answer :
Both 1 and 2
View Solution
Discuss Question
Statement 1 : Differential equation is not a polynomial equation in its derivatives. So, its degree is not defined.
Statement 2 : The highest order derivative in the given polynomial is 2.
70.
Solution of the differential equation $$x = 1 + xy\frac{{dy}}{{dx}} + \frac{{{x^2}{y^2}}}{{2!}}{\left( {\frac{{dy}}{{dx}}} \right)^2} + \frac{{{x^3}{y^3}}}{{3!}}{\left( {\frac{{dy}}{{dx}}} \right)^3} + ......$$
A
$$y = \ln \left( x \right) + c$$
B
$$y = {\left( {\ln \,x} \right)^2} + c$$
C
$$y = \pm \ln \left( x \right) + c$$
D
$$xy = {x^y} + c$$
Answer :
$$y = \pm \ln \left( x \right) + c$$
View Solution
Discuss Question
The given equation is reduced to
$$\eqalign{
& x = {e^{xy\left( {\frac{{dy}}{{dx}}} \right)}} \cr
& \Rightarrow \ell n\,x = xy\frac{{dy}}{{dx}} \cr
& \Rightarrow \int {y\,dy} = \int {\frac{1}{x}} \ell n\,x\,dx \cr
& \Rightarrow \frac{{{y^2}}}{2} = \frac{{{{\left( {\ell n\,x} \right)}^2}}}{2} + c \cr
& \Rightarrow y = \pm \sqrt {{{\left( {\ell n\,x} \right)}^2}} + c \cr
& \Rightarrow y = \pm \ell n\,x + c \cr} $$