11. If $$\left( {2 + \sin \,x} \right)\frac{{dy}}{{dx}} + \left( {y + 1} \right)\cos \,x = 0$$       and $$y\left( 0 \right) = 1,$$   then $$y\left( {\frac{\pi }{2}} \right)$$  is equal to :

A $$\frac{4}{3}$$
B $$\frac{1}{3}$$
C $$ - \frac{2}{3}$$
D $$ - \frac{1}{3}$$
Answer :   $$\frac{1}{3}$$
Discuss Question

12. The differential equation whose solution is $$A{x^2} + B{y^2} = 1,$$    where $$A$$ and $$B$$ are arbitrary constants is of-

A second order and second degree
B first order and second degree
C first order and first degree
D second order and first degree
Answer :   second order and first degree
Discuss Question

13. The differential equation which represents the family of curves $$y = {c_1}{e^{{c_2}x}},$$   where $${c_1},$$ and $${c_2}$$ are arbitrary constants, is

A $$y'' = y'y$$
B $$yy'' = y'$$
C $$yy'' = {\left( {y'} \right)^2}$$
D $$y' = {y^2}$$
Answer :   $$yy'' = {\left( {y'} \right)^2}$$
Discuss Question

14. The differential equation of the curve $$\frac{x}{{c - 1}} + \frac{y}{{c + 1}} = 1$$     is given by :

A $$\left( {\frac{{dy}}{{dx}} - 1} \right)\left( {y + x\frac{{dy}}{{dx}}} \right) = 2\frac{{dy}}{{dx}}$$
B $$\left( {\frac{{dy}}{{dx}} + 1} \right)\left( {y - x\frac{{dy}}{{dx}}} \right) = \frac{{dy}}{{dx}}$$
C $$\left( {\frac{{dy}}{{dx}} + 1} \right)\left( {y - x\frac{{dy}}{{dx}}} \right) = 2\frac{{dy}}{{dx}}$$
D none of these
Answer :   $$\left( {\frac{{dy}}{{dx}} + 1} \right)\left( {y - x\frac{{dy}}{{dx}}} \right) = 2\frac{{dy}}{{dx}}$$
Discuss Question

15. A curve passing through $$\left( {2,\,3} \right)$$  and satisfying the differential equation $$\int_0^x {ty\left( t \right)dt = {x^2}y\left( x \right),\,\left( {x > 0} \right)} {\text{ is}}\,{\text{:}}$$

A $${x^2} + {y^2} = 13$$
B $${y^2} = \frac{9}{2}x$$
C $$\frac{{{x^2}}}{8} + \frac{{{y^2}}}{{18}} = 1$$
D $$xy = c$$
Answer :   $$xy = c$$
Discuss Question

16. The general solution of the differential equation $$\frac{{{d^2}y}}{{d{x^2}}} = \cos \,nx$$    is :
[Where $$C$$ and $$D$$ are arbitrary constants]

A $${n^2}y + \cos \,nx = {n^2}\left( {Cx + D} \right)$$
B $${n^2}y - \sin \,nx = {n^2}\left( { - Cx + D} \right)$$
C $${n^2}y + \cos \,nx = \frac{{Cx + D}}{{{n^2}}}$$
D none of these
Answer :   $${n^2}y + \cos \,nx = {n^2}\left( {Cx + D} \right)$$
Discuss Question

17. If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A $$ - \frac{1}{2}$$
B $$e + \frac{1}{2}$$
C $$e - \frac{1}{2}$$
D $$\frac{1}{2}$$
Answer :   $$ - \frac{1}{2}$$
Discuss Question

18. If $$y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n},$$     then $$\left( {1 + {x^2} } \right)\frac{{{d^2}y}}{{d{x^2}}} + x\frac{{dy}}{{dx}}{\text{ is :}}$$

A $${n^2}y$$
B $$ - {n^2}y$$
C $$ - y$$
D $$2{x^2}y$$
Answer :   $${n^2}y$$
Discuss Question

19. The degree of differential equation satisfying the relation $$\sqrt {1 + {x^2}} + \sqrt {1 + {y^2}} = \lambda \left( {x\sqrt {1 + {y^2}} - y\sqrt {1 + {x^2}} } \right){\text{ is :}}$$

A 1
B 2
C 3
D 4
Answer :   1
Discuss Question

20. What is the solution of the equation $$\ln \left( {\frac{{dy}}{{dx}}} \right) + x = 0\,?$$

A $$y + {e^x} = c$$
B $$y - {e^{ - x}} = c$$
C $$y + {e^{ - x}} = c$$
D $$y - {e^x} = c$$
Answer :   $$y + {e^{ - x}} = c$$
Discuss Question


Practice More MCQ Question on Maths Section