121.
The function $$y = f\left( x \right)$$ is the solution of the differential equation $$\frac{{dy}}{{dx}} + \frac{{xy}}{{{x^2} - 1}} = \frac{{{x^4} + 2x}}{{\sqrt {1 - {x^2}} }}$$ in $$\left( { - 1,\,1} \right)$$ satisfying $$f\left( 0 \right) = 0.$$ Then $$\int\limits_{ - \,\frac{{\sqrt 3 }}{2}}^{\frac{{\sqrt 3 }}{2}} {f\left( x \right)d\left( x \right)} $$ is-
Given, differential equation as $$1 + 3{\left( {\frac{{dy}}{{dx}}} \right)^{\frac{2}{3}}} = 4\frac{{{d^3}y}}{{d{x^3}}}$$
On cubing the equation on both the sides,
$$\eqalign{
& {\left( {1 + 3{{\left( {\frac{{dy}}{{dx}}} \right)}^{\frac{2}{3}}}} \right)^3} = {\left( {4\frac{{{d^3}y}}{{d{x^3}}}} \right)^3} \cr
& \Rightarrow {\left( {1 + 3\frac{{dy}}{{dx}}} \right)^2} = 64 \times {\left( {\frac{{{d^3}y}}{{d{x^3}}}} \right)^3} \cr} $$
The order of the equation is the highest degree of differential in the equation.
Here it is 3....... (since $$\frac{{{d^3}y}}{{d{x^3}}}$$ exists in the equation)
∴ Order $$=3$$
The degree of the equation is the power of the highest order differential term in the equation.
Here, it is 3........ (since power of $$\frac{{{d^3}y}}{{d{x^3}}}$$ in the equation is 3)
∴ Degree $$=3$$
123.
The solution of the differential equation $$\frac{{dy}}{{dx}} = \frac{{1 - 3y - 3x}}{{1 + x + y}}$$ is :
A
$$x + y - \ell n\left| {x + y} \right| = c$$
B
$$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$
C
$$x + 3y - 2\ell n\left| {1 - x - y} \right| = c$$
D
none of these
Answer :
$$3x + y + 2\ell n\left| {1 - x - y} \right| = c$$