52.
A quadratic equation whose roots are $${\left( {\frac{\gamma }{\alpha }} \right)^2}$$ and $${\left( {\frac{\beta }{\alpha }} \right)^2},$$ where $$\alpha ,\beta ,\gamma $$ are the roots of $${x^3} + 27 = 0,$$ is
53.
If $$y \ne 0$$ then the number of values of the pair $$(x, y)$$ such that $$x + y + \frac{x}{y} = \frac{1}{2}$$ and $$\left( {x + y} \right)\frac{x}{y} = - \frac{1}{2},$$ is
$$xy + {y^2} + x = \frac{y}{2},{x^2} + xy = - \frac{y}{2}.$$
Adding, $${\left( {x + y} \right)^2} + x = 0,$$ and subtracting $${y^2} - {x^2} = y - x.$$
Solving these equations, $$x = - 1, y = 2$$ and $$x = - \frac{1}{4} = y.$$
54.Statement-1 : For every natural number $$n \geqslant 2,$$
$$\frac{1}{{\sqrt 1 }} + \frac{1}{{\sqrt 2 }} + ...... + \frac{1}{{\sqrt n }} > \sqrt n .$$ Statement-2 : For every natural number $$n \geqslant 2,$$
$$\sqrt {n\left( {n + 1} \right)} < n + 1.$$
A
Statement -1 is false, Statement-2 is true
B
Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
C
Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
D
Statement -1 is true, Statement-2 is false
Answer :
Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
As all the coefficients are not real, one common root does not imply that the other root is also common.
Let $$\alpha $$ be the common root. Then $${\alpha ^2} + i\alpha + a = 0,{\alpha ^2} - 2\alpha + ia = 0$$
$$\eqalign{
& \Rightarrow \,\,\frac{{{\alpha ^2}}}{a} = \frac{\alpha }{{a\left( {1 - i} \right)}} = \frac{1}{{ - 2 - i}} \cr
& \Rightarrow \,\,{a^2}{\left( {1 - i} \right)^2} = a\left( { - 2 - i} \right). \cr} $$