51. If $${a^2} + {b^2} + {c^2} = 1,\,\,{\text{then }}\,ab + bc + ca$$        lies in the interval

A $$\left[ {\frac{1}{2},2} \right]$$
B $$\left[ { - 1,2} \right]$$
C $$\left[ { - \frac{1}{2},1} \right]$$
D $$\left[ { - 1,\frac{1}{2}} \right]$$
Answer :   $$\left[ { - \frac{1}{2},1} \right]$$
Discuss Question

52. A quadratic equation whose roots are $${\left( {\frac{\gamma }{\alpha }} \right)^2}$$ and $${\left( {\frac{\beta }{\alpha }} \right)^2},$$  where $$\alpha ,\beta ,\gamma $$   are the roots of $${x^3} + 27 = 0,$$   is

A $${x^2} - x + 1 = 0$$
B $${x^2} + 3x + 9 = 0$$
C $${x^2} + x + 1 = 0$$
D $${x^2} - 3x + 9 = 0$$
Answer :   $${x^2} + x + 1 = 0$$
Discuss Question

53. If $$y \ne 0$$  then the number of values of the pair $$(x, y)$$  such that $$x + y + \frac{x}{y} = \frac{1}{2}$$    and $$\left( {x + y} \right)\frac{x}{y} = - \frac{1}{2},$$    is

A 1
B 2
C 0
D none of these
Answer :   2
Discuss Question

54. Statement-1 : For every natural number $$n \geqslant 2,$$
$$\frac{1}{{\sqrt 1 }} + \frac{1}{{\sqrt 2 }} + ...... + \frac{1}{{\sqrt n }} > \sqrt n .$$
Statement-2 : For every natural number $$n \geqslant 2,$$
$$\sqrt {n\left( {n + 1} \right)} < n + 1.$$

A Statement -1 is false, Statement-2 is true
B Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
C Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
D Statement -1 is true, Statement-2 is false
Answer :   Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
Discuss Question

55. If $$a \in R,b \in R$$   then the factors of the expression $$a\left( {{x^2} - {y^2}} \right) - bxy$$    are

A real and different
B real and identical
C complex
D None of these
Answer :   real and different
Discuss Question

56. If $$\alpha ,\beta $$  are roots of $$375{x^2} - 25x - 2 = 0$$     and $${s_n} = {\alpha ^n} + {\beta ^n}$$   then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{s_r}} $$   is

A $$\frac{7}{{116}}$$
B $$\frac{1}{{12}}$$
C $$\frac{29}{{358}}$$
D None of these
Answer :   $$\frac{1}{{12}}$$
Discuss Question

57. If $$a, b, c$$  are distinct $$+ve$$  real numbers and $${a^2} + {b^2} + {c^2} = 1\,\,{\text{then }}ab + bc + ca\,\,{\text{is}}$$

A less than 1
B equal to 1
C greater than 1
D any real no.
Answer :   less than 1
Discuss Question

58. If $$\left| {z - \frac{4}{z}} \right| = 2,$$   then the maximum value of $${\left| z \right|}$$ is equal to:

A $$\sqrt 5 + 1$$
B 2
C $$2 + \sqrt 2 $$
D $$\sqrt 3 + 1$$
Answer :   $$\sqrt 5 + 1$$
Discuss Question

59. Let $$\alpha ,\beta $$  be the roots of $$x^2 + x +1 = 0.$$    Then the equation whose roots are $${\alpha ^{229}}$$  and $${\alpha ^{1004}}$$  is

A $$x^2 - x - 1 = 0$$
B $$x^2 - x + 1 = 0$$
C $$x^2 + x - 1 = 0$$
D $$x^2 + x + 1 = 0$$
Answer :   $$x^2 + x + 1 = 0$$
Discuss Question

60. If the equations $${x^2} + ix + a = 0,{x^2} - 2x + ia = 0,a \ne 0$$         have a common root then

A $$a$$ is real
B $$a = \frac{1}{2} + i$$
C $$a = \frac{1}{2} - i$$
D the other root is also common
Answer :   $$a = \frac{1}{2} - i$$
Discuss Question


Practice More MCQ Question on Maths Section